纺织学报 ›› 2018, Vol. 39 ›› Issue (12): 18-23.doi: 10.13475/j.fzxb.20180201506

• 纤维材料 • 上一篇    下一篇

仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能

    

  1.  
  • 收稿日期:2018-02-05 修回日期:2018-09-02 出版日期:2018-12-15 发布日期:2018-12-17
  • 基金资助:

     

Bionic horizontal branching structure of PEG/PP microfibers material and liquid diffusion properties in horizontal direction

    

  • Received:2018-02-05 Revised:2018-09-02 Online:2018-12-15 Published:2018-12-17
  • Supported by:

     

摘要: 为增强熔喷超细纤维材料的液体水平扩散性能,以聚乙二醇(PEG)和聚丙烯(PP)为原料,从仿生角度制备了具有水平分支结构的PEG/PP熔喷超细纤维材料,并对样品中纤维的直径分布、排列形态、上下表面润湿时间,以及水痕扩散面积进行测试。结果表明:不同细度的纤维在水平方向上随机分布,并呈现多根纳米纤维搭接于单根超细纤维的状态,形成仿生分支状网络结构;其中,直径2 000 nm以上的纤维形成一级子分支,800~2 000 nm超细纤维构成二级子分支,800 nm以下的纳米纤维组成三级子分支;三级子分支网络密度可以通过增大PEG比例(0%~20%)和熔体纺丝温度(230~250℃)从1.86到4.20调控;上下表面润湿时间和水痕面积受三级子分支网络密度的影响较大,上表面浸润时间随三级子分支网络密度的增加可从3.234 s降低到2.215 s。

Abstract: In order to enhance liquid diffusion properties in horizontal direction of the melt blown materials with microfibers. The samples of PEG/PP melt blown microfiber materials were made by the polyethylene glycol (PEG) modified polypropylene (PP) with blend-modification. The fiber fineness distribution, arrangement morphology, the upper and lower wetting time and the moisture welts area tested were tested. The results show that, fibers with different fineness are random distributed in horizontal direction, and multiple nanofibers attach the microfibers, which forming the horizontal branching structure. The fibers above 2000Nm form the primary branches, the microfibers with 800-2000nm consist the second branches, and the nanofibers below 800nm compose the third branches. The network density of the third branches can be adjust from the 1.86 to 4.20 by increasing the ratio of PEG (0%~20%) and melt spinning temperature (230~250 C). The upper and lower wetting time and moisture welts area vary with network density of the third branches, the upper wetting time decreases from 3.234s to 2.215s with network density increase from 1.86 to 4.2.

中图分类号: 

  •  
[1] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[2] 方玮 徐岚. 漏斗式喷气静电纺聚乙烯吡咯烷酮纳米纤维膜的制备及其表征[J]. 纺织学报, 2018, 39(10): 7-11.
[3] 苏耀华 郑来久 郑环达 闫俊 高世会 王健 万刚. 超临界二氧化碳无水染色系统有效能分析[J]. 纺织学报, 2018, 39(10): 131-137.
[4] 蒋亚君 邱莹丹 王霁龙 章倩 邱夷平. 应用1-辛烯涂层与常压等离子体处理的苎麻纤维疏水性能改性[J]. 纺织学报, 2015, 36(06): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈惠兰;陈济刚. 拉舍尔双针床针织物线圈几何结构研究[J]. 纺织学报, 1998, 19(05): 18 -20 .
[2] 黄锋林;魏取福;徐文正. 等离子体处理对丙纶纤维表面接触角的影响[J]. 纺织学报, 2006, 27(2): 65 -67 .
[3] 周向东.;杨海涛. 丙纶FDY油剂的研制[J]. 纺织学报, 2006, 27(7): 83 -85 .
[4] 余伟. 铅布织机布边控制装置的设计[J]. 纺织学报, 2004, 25(05): 111 -112 .
[5] 袁骏;周文龙*;季振国. X射线光电子能谱分析羊毛表面结构的研究[J]. 纺织学报, 2001, 22(02): 10 -11 .
[6] 魏取福. 非织造土工布复合层渗透性能的分析[J]. 纺织学报, 1998, 19(06): 12 -13 .
[7] 郭爱珍;凌秀珍. 防水透湿织物的工艺技术和发展方向[J]. 纺织学报, 1985, 6(06): 58 -62 .
[8] 詹勇;李炜平. SM92型剑杆织机织疵分析[J]. 纺织学报, 1989, 10(08): 25 -27 .
[9] 郑天勇;黄故. 机织物外观分析及计算机三维模拟[J]. 纺织学报, 2001, 22(02): 40 -42 .
[10] 孙仁杰. 松孔镍磷钢领的应用[J]. 纺织学报, 1983, 4(10): 42 -44 .