纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 114-119.doi: 10.13475/j.fzxb.20180305906
摘要:
为准确获取燃烧假人测试中防火服热暴露前后衣下空气层厚度及其分布,提出一种基于三维现场扫描的测量和表征方法。利用Kinect深度相机,通过在燃烧假人室内构建扫描平台,现场获得假人裸体及着装状态点云数据;基于Geomagic逆向工程软件进行三维建模、对齐和比较,并通过实现假人表面传感器在三维空间的准确定位,快速有效地表征衣下空气层厚度及分布。经验证发现:即使是相同的服装每次穿着后衣下空气层分布也存在较大差异;背部区域热暴露前后空气层厚度平均变异系数分别达到46%、35%。结果表明,以往异地扫描获得的数据难以准确反映燃烧测试时的真实状态,现场扫描更有利于准确分析因服装材料、规格、高温收缩等因素导致的衣下空气层变化对热防护性能的影响。
中图分类号:
[1] |
KIM Y, LEE C, LI P, et al. Investigation of air gaps entrapped in protective clothing systems[J]. Fire and Materials, 2002,26(3):121-126.
doi: 10.1002/(ISSN)1099-1018 |
[2] |
SONG G W. Clothing air gap layers and thermal resistance performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
doi: 10.1177/1528083707069506 |
[3] |
MAH T, SONG G W. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Text Research Journal, 2010,80(13):1317-1329.
doi: 10.1177/0040517509358795 |
[4] |
MAH T, SONG G W. Investigation of the contribution of garment design to thermal protection: part 2: instrumented female mannequin flash-fire evaluation system[J]. Textile Research Journal, 2010,80(14):1473-1487.
doi: 10.1177/0040517509358796 |
[5] | 王云仪, 张雪, 李小辉, 等. 基于Geomagic 软件的燃烧假人衣下空气层特征提取[J]. 纺织学报, 2012,33(11):102-106. |
WANG Yunyi, ZHANG Xu, LI Xiaohui, et al. Geomagic-based characteristic extraction of air gap under clothing[J]. Journal of Textile Research, 2012,33(11):102-106. | |
[6] |
ZOLLHOFER M, MARTINEK M, GREINER G, et al. Automatic reconstruction of personalized avatars from 3D face scans[J]. Computer Animation and Virtual Worlds, 2011,22(2/3):195-202.
doi: 10.1002/cav.v22.2/3 |
[7] | 周瑾. 基于 Kinect 深度相机的三维人体重建技术研究[D]. 杭州:杭州电子科技大学, 2013: 10-22. |
ZHOU Jin. Research on 3D human body reconstruction technology based on the Kinect depth camera[D]. Hangzhou:Hangzhou University of Electronic Science and Technology, 2013: 10-22. | |
[8] | 宋诗超, 禹素萍, 许武军. 基于Kinect的三维人体扫描、重建及测量技术的研究[J]. 天津工业大学学报, 2012,31(5):34-41. |
SONG Shichao, YU Suping, XU Wujun. Research on 3D human scanning, reconstruction and measurement technology based on Kinect[J]. Journal of Tianjin University of Technology, 2014,31(5):34-41. | |
[9] | 王敏, 李小辉. 我国建成国际领先的服装燃烧假人系统:“东华火人”[J]. 中国个体防护装备, 2011(5):54-55. |
WANG Min, LI Xiaohui. The latest flame test manikin system developed in China[J]. China Personal Protective Equipment, 2011(5):54-55. | |
[10] |
PSIKUTA A, FRACKIEWICZ-KACZMAREK J, FRYDRYCH I, et al. Quantitative evaluation of air gap thickness and contact area between body and garment[J]. Textile Research Journal, 2012,82(14):1405-1413.
doi: 10.1177/0040517512436823 |
[1] | 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196. |
[2] | 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117. |
[3] | 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122. |
[4] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144. |
[5] | 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123. |
[6] | 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113. |
[7] | 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144. |
[8] | 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019, 40(10): 141-146. |
[9] | 王璐, 丁笑君, 夏馨, 王虹, 周小红 . SiO2气凝胶/ 芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84. |
[10] | 张泓月, 李小辉 . 热防护服用织物蜂窝夹芯结构的辐射热性能测评[J]. 纺织学报, 2019, 40(10): 147-151. |
[11] | 杜菲菲 李小辉 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138. |
[12] | 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104. |
[13] | 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118. |
[14] | 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156. |
[15] | 苏云 李俊. 火灾环境下防水透气层对消防服热湿防护性能的影响[J]. 纺织学报, 2017, 38(02): 152-158. |
|