纺织学报 ›› 2019, Vol. 40 ›› Issue (01): 57-61.doi: 10.13475/j.fzxb.20180306905

• 纺织工程 • 上一篇    下一篇

加捻金属丝纱线的制备及其弯曲刚度

徐海燕1,2(), 陈南梁3, 蒋金华3, 邵光伟3   

  1. 1.泉州师范学院 纺织与服装学院, 福建 泉州 362000
    2.天津工业大学 纺织科学与工程学院, 天津 300387
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-03-29 修回日期:2018-10-15 出版日期:2019-01-15 发布日期:2019-01-18
  • 作者简介:徐海燕(1982—),女,副教授,博士。主要研究方向为产业用纺织品及新型服装材料。E-mail: xuhaiyan@qztc.edu.cn
  • 基金资助:
    泉州市科技计划项目(2018C126R);泉州市高等学校中青年学科(专业)带头人培养计划项目(泉教高〔2018〕1号)

Preparation and bending rigidness of twisted metal yarn

XU Haiyan1,2(), CHEN Nanliang3, JIANG Jinhua3, SHAO Guangwei3   

  1. 1. College of Textile and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    2. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-03-29 Revised:2018-10-15 Online:2019-01-15 Published:2019-01-18

摘要:

为降低高刚度、高模量、低延伸性金属丝纱线的弯曲刚度以便于针织物的编织,分别采用传统的转杯纺纱机和管绞机对不同线密度的镀金钼丝单丝进行加捻,借助三维视频显微镜和纯弯曲试验仪分析了2种加捻工艺及单丝线密度对加捻前后纱线外观形貌以及弯曲刚度的影响。结果表明:与转杯纺得到的金属丝纱线相比,采用管绞机加捻得到的纱线外观紧密均匀且平直光洁,存在较少的残余扭矩,管绞机更适合用于对刚性纱线进行加捻;在纱线线密度相同的条件下,单丝线密度与纱线的弯曲刚度成正比,可通过降低纱线中单丝的线密度来降低纱线的弯曲刚度,从而增加纱线的柔软性使其更易于编织。

关键词: 金属丝纱线, 加捻, 管绞机, 镀金钼丝, 弯曲刚度

Abstract:

In ordert decrease the bending rigidness of metal yarns with high strength, high modulus and low elongation for knitting, metal multifilaments with different fineness were twisted by rotor spinning machine and tubular strander. The morphologies of yarns by different twisting methods were observed, and the bending rigidness of monofilaments and multifilaments were measured. It was concluded that compared with rotor spun metal yarns, the yarns twisted by tubular strander has a better morphology. If a yarn fineness is given, the finer the monofilament is, and the smaller the bending rigidness is. Thus, the rigid yarns can be twisted by tubular strander, and bending rigidness of rigid yarns can be decreased by using finer monofilaments.

Key words: metal yarn, twisting, tubular strander, gold plated molybdenum wire, bending rigidness

中图分类号: 

  • TS181

图1

管绞机并线示意图 1—管状筒体; 2—放线盘; 3—单丝; 4—模具;5—牵引装置; 6—导轮; 7—摆杆; 8—滑轮; 9—收线盘。"

图2

纱线弯曲实验试样"

图3

镀金钼丝股线的扭结现象 (a) Monofilament (b) Multifilaments"

图4

管绞机并线获得的镀金钼丝外观"

图5

金属单丝在管绞机加捻区域之前的走向 (a) Pay-off stand rotating with tubular cylinder; (b) Pay-off stand always keeping vertical in twisting processing"

表1

金属丝纱线的弯曲刚度"

纱线
编号
By/
(cN·cm2)
Bfr/
(cN·cm2·tex-2)
Byr/
(cN·cm2·tex-1)
1# 0.001 0 0.147 9×10-3
2# 0.004 9 0.156 2×10-3
5# 0.003 9 0.371 4×10-3
6# 0.015 2 0.910 2×10-3
[1] HUANG Y, HU H, HUANG Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano, 2015,9(5):4766-4775.
pmid: 25842997
[2] LIU X M, CHEN N L, FENG X W. Investigation on the knittability of glass yarn[J]. Journal of the Textile Institute, 2009,100(5):440-450.
doi: 10.1080/00405000701877657
[3] 邵光伟, 蒋金华, 陈南梁. 柔性经编金属网格材料的切口敏感性[J]. 纺织学报, 2014,35(3):46-51.
SHAO Guangwei, JIANG Jinhua, CHEN Nanliang. Notching sensitivity of flexible warp knitting metal mesh[J]. Journal of Textile Research, 2014,35(3):46-51.
[4] LEONG K H, RAMAKRISHNA S, HUANG Z M, et al. The potential of knitting for engineering composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2000,31(3):197-220.
doi: 10.1016/S1359-835X(99)00067-6
[5] SAVCI S, CURISKIS J I, PAILTHORPE M T. Knittability of glass fiber weft-knitted preforms for composites[J]. Textile Research Journal, 2001,71(1):15-21.
doi: 10.1177/004051750107100103
[6] LAU K W, DIAS T. Knittability of high-modulus yarns[J]. Journal of the Textile Institute, 1994,85(2):173-190.
doi: 10.1080/00405009408659018
[7] HU H, ZHU M. A study of the degree of breakage of glass filament yarns during the weft knitting process[J]. Autex Research Journal, 2005,5(3):41-148.
[8] WILLIAMS D. New knitting methods offer continuous structures[J]. Engineering(London), 1987,227(6):12-13.
[9] 刘晓明, 蒋金华, 陈建祥, 等. 玻璃纤维网格织物的编织与性能分析[J]. 东华大学学报(自然科学版), 2008(4):391-395.
LIU Xiaoming, JIANG Jinhua, CHEN Jianxiang, et al. An investigation into the manufacture and mechanical property of glass net preform[J]. Journal of Donghua University (Natural Science Edition), 2008(4):391-395.
[10] RAMAKRISHNA S, HULL D. Tensile behaviour of knitted carbon-fibre-fabric/epoxy laminates: part I: experimental[J]. Composites Science and Technology, 1994,50(2):237-247.
doi: 10.1016/0266-3538(94)90145-7
[11] KNAPTON J J F. Knitting performance of wool yarns: instrumentation studies[J]. Textile Research Journal, 1967,37(7):539-551.
doi: 10.1177/004051756703700701
[12] SASAKI T, KURODA K. Evaluation and measurement of knittability[J]. Journal of the Textile Machinery Society of Japan, 1975,21(1):9-16.
doi: 10.4188/jte1955.21.9
[13] PETERSON J, VEGBORN E, ANDERSSON C H. Knittability of fibers with high stiffness[C]// The 5th International Conference on Textile Composite. Riga: [s.n], 2000: 1-10.
[14] COLLIER J R, TAO W Y, COLLIER B J. Bending of internally reinforced rayon fibers[J]. Journal of the Textile Institute, 1991,82(1):42-51.
doi: 10.1080/00405009108658735
[15] LAU Y M, TAO X, DHINGRA R. Spirality in single-jersey fabrics[J]. Textile Asia, 1995(8):95-102.
[16] 杨昆, 陶肖明, 叶荫权, 等. 一种新型针织用环锭纱的研制及应用[J]. 纺织学报, 2004,25(6):58-60.
YANG Kun, TAO Xiaoming, YE Yinquan, et al. Investigation and application of a novel ring knitting yarn[J]. Journal of Textile Research, 2004,25(6):58-60.
doi: 10.1177/004051755502500108
[17] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社,2002: 126-127, 341-342.
YU Weidong, CHU Caiyuan. Textile Physics[M]. Shanghai: Donghua University Press,2002: 126-127, 341-342.
[1] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[2] 傅婷 张玉泽 王姜 陈南梁. 集聚纱的分层结构与集聚机制[J]. 纺织学报, 2019, 40(02): 53-57.
[3] 汝欣 彭来湖 吕明来 史伟民 胡旭东. 纬编针织物几何建模及其算法[J]. 纺织学报, 2018, 39(09): 44-49.
[4] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[5] 陈洪立 李炯 金玉珍 武传宇 胡旭东. 空心锭结构参数对喷气涡流纺内流场的影响[J]. 纺织学报, 2017, 38(12): 135-140.
[6] 韩蓉 胡堃 毋戈 钟跃崎. 应用图像法的织物弯曲刚度计算[J]. 纺织学报, 2016, 37(3): 41-46.
[7] 余豪 张建建 刘可帅 陈军 夏治刚. 导纱钩运动引起的纺纱三角区变化对成纱性能的影响[J]. 纺织学报, 2016, 37(10): 19-25.
[8] 吴巧英 胡滢 吴春胜 劳世慧. 不同织物弯曲性能测试仪测试结果的比较[J]. 纺织学报, 2015, 36(07): 126-130.
[9] 刘娜 徐伯俊 刘新金. 基于ANSYS的加捻三角区内纤维变形数值模拟[J]. 纺织学报, 2014, 35(8): 104-0.
[10] 袁建荣 李兆君 吴雄英 丁雪梅. 家庭滚筒洗衣机洗涤温度对机织物外观平整性的影响[J]. 纺织学报, 2014, 35(7): 74-0.
[11] 王震 姜亚明 刘良森 蔡甜甜. 常用高性能纱线弯曲刚度的测量和表征[J]. 纺织学报, 2014, 35(5): 30-0.
[12] 刘新金 苏旭中. 环锭纺纱中加捻三角区内纤维受力分析[J]. 纺织学报, 2013, 34(12): 32-0.
[13] 徐海燕. 捻度对超高分子质量聚乙烯纱线可编织性的影响[J]. 纺织学报, 2013, 34(11): 44-0.
[14] 杨建平 傅婷 汪军. 网格圈负压式集聚纺集聚区须条半自由端加捻机理研究[J]. 纺织学报, 2011, 32(10): 37-0.
[15] 薛文良;魏孟媛;陈革;程隆棣. 纱线结构中纤维形态的数学表征[J]. 纺织学报, 2010, 31(5): 30-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!