纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 1-7.doi: 10.13475/j.fzxb.20180800307

• 纤维材料 •    下一篇

聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能

张琼1, 刘翰霖1, 李平平1, 李妮1,2()   

  1. 1.浙江理工大学 材料与纺织学院 丝绸学院, 浙江 杭州 310018
    2.浙江理工大学先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2018-08-01 修回日期:2018-11-11 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 李妮
  • 基金资助:
    浙江省自然科学基金项目(LY16E030007);浙江理工大学521人才培养计划项目(11110132521507)

Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber membrane

ZHANG Qiong1, LIU Hanlin1, LI Pingping1, LI Ni1,2()   

  1. 1. Silk Institute,College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-08-01 Revised:2018-11-11 Online:2019-02-15 Published:2019-02-01
  • Contact: LI Ni

摘要:

为制备具有防水透湿性能的超细纤维膜,在聚氨酯(PU)纺丝液中添加疏水二氧化硅(SiO2)颗粒,制备PU/SiO2复合超细纤维膜。通过软件模拟分析了纺丝液浓度和纤维膜厚度对纤维膜孔径的影响,根据静态水接触角、静水压、透气率和透湿率分析了复合超细纤维膜的防水透湿性能,并讨论了不同质量分数SiO2对PU/SiO2复合超细纤维膜防水透湿性能的影响。结果表明:复合纤维膜的孔径随着纺丝液浓度的增加而增加,随着纤维膜厚度的增加而减少;当SiO2质量分数为9%、PU质量分数为18%时,PU/SiO2复合纤维膜的静态水接触角达到131°,静水压为6.4 kPa,透气率为33.4 mm/s,透湿率为8.065 kg/(m2·d);该条件下复合纤维膜断裂应力为4.16 MPa,断裂伸长率为184%,与纯PU膜相比具有较好的尺寸稳定性。

关键词: 聚氨酯, 二氧化硅, 静电纺丝, 防水透湿

Abstract:

In order to prepare a superfine fiber membrane with waterproof and moisture-permeable properties, polyurethane/silica (PU/SiO2) membranes were prepared by electrospinning. The spinning solution was prepared by adding hydrophobic SiO2 to PU solution. The effects of spinning solution concentration and membranes thickness on the pore size of the membranes were analyzed by software simulation. The waterproof and moisture-permeable properties of the membranes were characterized by the water contact angle, hydrostatic pressure, air permeability and moisture permeability. The effects of different SiO2 concentrations on the waterproof and moisture-permeable properties of the PU/SiO2 composite superfine fiber membranes were studied. The results show that the pore size of membranes increase with the spinning solution concentrations, and decrease with the increase of the membranes thickness. When the concentration of SiO2 is 9% and that of PU is 18%, the composite membranes are endowed with the water contact angle of 131°, the hydrostatic pressure of 6.4 kPa, the air permeability of 33.4 mm/s and the moisture permeability up to 8.065 kg/(m2·d). Meantime, the broken stress of the PU/SiO2 composite membranes reaches 4.16 MPa, and the elongation at break reaches 184%. Therefore, the membranes have better dimensional stability than pure PU membranes.

Key words: polyurethane, silica, electrospinning, waterproof and moisture-permeable property

中图分类号: 

  • TS102.5

图1

不同纺丝液质量分数下PU纤维膜的孔径大小"

图2

不同纺丝液质量分数下PU纤维膜的三维结构模型"

图3

不同厚度的PU纤维膜的孔径大小"

图4

不同厚度的PU纤维膜的三维结构模型的俯视图"

图5

不同SiO2质量分数的PU/SiO2复合纤维膜的SEM照片"

图6

PU/SiO2复合纤维膜的TEM照片"

图7

不同SiO2质量分数的PU/SiO2复合纤维膜的红外谱图"

表1

不同SiO2质量分数的PU/SiO2复合纤维膜的孔径及孔隙率"

SiO2质量分数量/% 平均孔径/μm 最大孔径/μm 孔隙率/%
0 2.273 28.256 54.20
3 2.435 41.257 53.90
6 4.218 42.850 52.70
9 3.031 35.868 52.10
12 3.423 39.714 51.03

表2

不同SiO2质量分数的PU/SiO2复合纤维膜力学性能"

SiO2质量
分数/%
断裂应
力/MPa
断裂伸长
率/%
初始模
量/MPa
0 6.15 238 14.72
3 5.70 216 14.53
6 4.54 203 13.62
9 4.16 184 13.61
12 3.10 162 14.21

表3

不同SiO2质量分数的PU/SiO2复合纤维膜的静态水接触角和静水压"

SiO2质量分数/% 静态水接触角/(°) 静水压/kPa
0 125 1.4
3 127 3.2
6 129 5.1
9 131 6.4
12 130 7.6

图8

不同SiO2质量分数的PU/SiO2复合纤维膜的透气率与透湿率"

[1] AHN H, PARK C, CHUNG S. Waterproof and breathable properties of nanoweb applied clothing[J]. Textile Research Journal, 2011,81(14):1438-1447.
[2] HUANG J. A new test method for determining water vapor transport properties of polymer membranes[J]. Polymer Testing, 2007,26(5):685-691.
[3] 周颖, 姚理荣, 高强. 聚氨酯/聚偏氟乙烯共混膜防水透气织物的制备及其性能[J]. 纺织学报, 2014,35(5):23-29.
ZHOU Ying, YAO Lirong, GAO Qiang. Preparation and characterization of polyurethane/polyvinylidene fluoride waterproof permeable composite fabric[J]. Journal of Textile Research, 2014,35(5):23-29.
[4] SUTON K, OMEROVIC K, KOVACEVIC M, et al. Analysis of Textile Materials Coating[M]. Zagreb: Faculty of Textile Technology, 2011: 239-249.
[5] PIOTR K, BOZENA K. Surface free energy of polyurethane coatings with improved hydrophobicity[J]. Colloid and Polymer Science, 2012,290(10):879-893.
doi: 10.1007/s00396-012-2598-x pmid: 22707844
[6] KAYAOGLU B K, OZTURK E, GUNER F S, et al. Improving hydrophobicity on polyurethane-based synthetic leather through plasma polymerization for easy care effect[J]. Journal of Coatings Technology and Research, 2013,10(4):549-558.
[7] HASHIZUME R, FUJIMOTO K L, HONG Y, et al. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold[J]. Biomaterials, 2015,31(12):3253-3265.
doi: 10.1016/j.biomaterials.2010.01.051 pmid: 20138661
[8] ZHANG M, SHENG J, YIN X, et al. Polyvinyl butyral modified polyvinylidene fluoride breathable-waterproof nanofibrous membranes with enhanced mechanical performance[J]. Macromolecular Materials and Engineering, 2016.DOI: org/10.1002/name.2016002/2.
pmid: 22184499
[9] 李静, 易玲敏, 王明乾, 等. 静电纺丝法制备超疏水氟硅改性纳米SiO2/PET共混膜[J]. 高分子材料科学与工程, 2016,32(12):115-120.
LI Jing, YI Lingmin, WANG Mingqian, et al. Fabrication superhydrophobic films of fluorosilicone-modified SiO2/PET by electrospinning[J]. Polymer Materials Science and Engineering, 2016,32(12):115-120.
[10] 徐旭凡. MCMC对聚氨酯膜防水透湿性能的影响[J]. 纺织学报, 2005,26(2):64-66.
XU Xufan. Effect of modified carboxymethyl cellulose on the waterproof and moisture permeability of the polyurethane film[J]. Journal of Textile Research, 2005,26(2):64-66.
[11] GU H, ZHANG Q, GU J, et al. Facile preparation of superhydrophobic silica nanoparticles by hydrothermal-assisted sol-gel process and effects of hydrothermal time on surface modification[J]. Journal of Sol-Gel Science and Technology, 2018: 87(2):478-485.
[12] 常怀云, 许淑燕, 应黎君, 等. 静电纺PAN纳米纤维多孔膜的微观结构与过滤性能[J]. 纺织学报, 2011,32(9):1-4.
CHANG Huaiyun, XU Shuyan, YING Lijun, et al. Microstructure and filtration properties of electrospun PAN nanofibrous porous membrane[J]. Journal of Textile Research, 2011,32(9):1-4.
[13] 张钊. SiO2基纤维隔热瓦热导率及压缩性能研究[D]. 哈尔滨:哈尔滨工业大学, 2014: 57-59.
ZHANG Zhao. Study on thermal conductivity and compression performance of SiO2-based fibrous insulation[D]. Harbin:Harbin Institute of Technology, 2014: 57-59.
[14] 杨友红, 王云发, 闻春香. 红外光谱法鉴别PVC革和PU革[J]. 产业用纺织品, 2010,28(2):44-47.
YANG Youhong, WANG Yunfa, WEN Chunxiang. The discrimination of PU leather and PVC leather by infrared spectroscopy[J]. Technical Textiles, 2010,28(2):44-47
[15] CORCUERA M A, RUEDA L, FEMANDEZ D, et al. Microstructure and properties of polyurethanes derived from castor oil[J]. Polymer Degradation and Stability, 2010,95(11):2175-2184.
[16] 谭晓玲, 果云, 潘肇琦, 等. 软段对水性聚氨酯结构与性能的影响[J]. 功能高分子学报, 2004(2):235-240.
TAN Xiaoling, GUO Yun, PAN Zhaoqi, et al. Influence of soft-segents on structure and properties of polyurethane emulsion[J]. Journal of Functional Polymers, 2004(2):235-240.
[1] 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[2] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[3] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2 药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[4] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[5] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[6] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/ 相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[7] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[8] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[9] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[10] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[11] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[12] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[13] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[14] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[15] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!