纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 100-104.doi: 10.13475/j.fzxb.20181002405

• 纺织工程 • 上一篇    下一篇

多轴向导电芳纶增强复合材料及其电磁屏蔽性能

缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒()   

  1. 绍兴文理学院 纺织服装学院, 浙江 绍兴 312000
  • 收稿日期:2018-10-12 修回日期:2018-11-14 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 洪剑寒
  • 作者简介:缪润伍(1998—),男。主要研究方向为导电纤维材料。
  • 基金资助:
    国家级大学生创新创业训练计划项目(20170349008);国家级大学生创新创业训练计划项目(201810349023);绍兴市公益技术应用研究项目(201810016);绍兴文理学院校级科研项目(2017LG1006)

Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials

MIAO Runwu, JIN Lihua, WEI Qiyu, HAN Xiao, HONG Jianhan()   

  1. College of Textile and Garment, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2018-10-12 Revised:2018-11-14 Online:2019-02-15 Published:2019-02-01
  • Contact: HONG Jianhan

摘要:

为提高芳纶的导电能力,以芳纶长丝纱为基材,采用一种基于原位聚合法的纱线连续导电处理方法制备芳纶/聚苯胺复合导电纱线。并以导电芳纶为增强体,以不饱和聚酯树脂为基体,制备了二轴向、三轴向和四轴向导电芳纶增强复合材料,研究了其电磁屏蔽性能。结果表明:经导电处理后,芳纶纤维表面附着一层导电聚苯胺,其电导率可达1.4~1.9 S/cm,力学性能稍有下降;多轴向导电芳纶增强复合材料其屏蔽效能值随着导电芳纶轴向数和排列密度的增大而提高,当导电芳纶排列密度达到70 根/(5 cm)时,四轴向导电芳纶增强复合材料对0.1~1.5 GHz范围内电磁波的平均电磁屏蔽效能达到22 dB。

关键词: 芳纶, 聚苯胺, 复合材料, 电磁屏蔽

Abstract:

In order to improve the conductivity of poly (p-phenylene terepahmide) (PPTA) filament yarn, conductive PPTA/polyaniline (PANI) composite yarn was manufactured by an in-situ polymerization-based continuous yarn conductive treatment process. Conductive PPTA yarn reinforced bi-axial, tri-axial and tetra-axial composite materials were prepared by using the conductive PPTA/PANI composite yarn as reinforcement and unsaturated polyester resin as matrix, and then the electromagnetic shielding effectiveness of the composite materials were measured. The results indicate that the surface of PPTA fiber is covered with conductive PANI layer after conductive treatment, the electrical conductivity can reach 1.4-1.9 S/cm, and the mechanical properties of the PPTA filament yarn declines slightly after treatment. The shielding effectiveness value of the multi-axial conductive PPTA yarn reinforced composite materials increases with the axial direction and density of conductive PPTA yarn, when the fabric density is 70/(5 cm), the average shielding effectiveness value of the tetra-axial conductive PPTA yarn reinforced composite material reaches 22 dB in the frequency range from 0.1 GHz to 1.5 GHz.

Key words: poly(p-phenylene terepahmide), polyaniline, composite material, electromagnetic shielding effectiveness

中图分类号: 

  • TQ327.9

图1

PPTA/PANI复合导电纱制备流程 1—芳纶;2—张力器;3—HCl/An浸渍槽;4—浸没辊;5—压辊;6—APS浸渍槽;7—溢流管;8—氧化剂储存罐;9—流量调节开关;10—压辊;11—摩擦牵引轮;12—废液皿;13—纱线储存容器。"

图2

PPTA长丝纱导电处理前后外观"

图3

导电芳纶排列方式"

图4

PPTA纱线处理前后表面形貌照片(×2 000)"

图5

PPTA/PANI复合导电纱电导率"

表1

PPTA纱线处理前、后的力学指标"

样品
名称
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
初始模量/
(cN·dtex-1)
PPTA 14.32±0.24 2.67±0.16 527.74±28.16
PPTA/PANI 12.46±0.60 2.34±0.15 523.20±10.23

图6

多轴向导电芳纶增强复合材料电磁屏蔽效能"

表2

复合材料屏蔽效能均值及对电磁波的屏蔽率"

密度/
(根·
(5 cm)-1)
屏蔽效能/dB 屏蔽率/%
二轴
三轴
四轴
二轴
三轴
四轴
25 4.89 9.24 11.84 67.56 88.09 93.45
40 8.24 11.94 14.82 85.00 93.60 96.70
55 10.00 15.43 17.10 90.00 97.14 98.05
70 12.50 18.39 22.09 94.38 98.55 99.38
[1] HONG Y K, LEE C Y, JEONG C K, et al. Electromagnetic interference shielding cahracteristics of fabric complexes coated with conductive polyprrole and thermally evaporated Ag[J]. Current Applied Physics, 2001,1(6):439-442.
doi: 10.1016/S1567-1739(01)00054-2
[2] SCHWARZ A, HAKUZIMA J, KACZYSKA A, et al. Gold coated para-aramid yarns through electroless deposition[J]. Surface & Coating Technology, 2010,204:1412-1418.
[3] LITTLE B K, LI Y F, CAMMARATA V, et al. Metallization of Kevlar fibers with gold[J]. Applied Materials & Interfaces, 2011,3:1965-1973.
pmid: 21574628
[4] ZHANG H R, ZOU X G, LIANG J J, et al. Development of electroless silver plating on para-aramid fibers and growth morphology of silver deposits[J]. Journal of Applied Polymer Scince, 2012,124:3363-3371.
[5] WANG W C, LI R Y, TIAN M, et al. Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine) functionalization[J]. ACS Applied Material & Interfaces, 2013,5:2062-2069.
doi: 10.1021/am302956h
[6] LIANG J J, ZOU X G, SHA Q S, et al. Conductive aramid fiber with Ni-Cu composite coating prepared using the metalation swelling method[J]. Fibers and Polymers 2013,14:453-458
doi: 10.1007/s12221-013-0453-4
[7] ZHAO X, HIROGAKI K, TABATA I, et al. A new method of producing conductive aramid fibers using supercritical carbon dioxide[J]. Surface & Coatings Technology, 2006,201:628-636.
[8] FATAMA U K, GOTOH Y. A new electroless Ni plating procedure of iodine-treated aramid fiber[J]. Journal of Coating Technology Research, 2013,10:415-425.
doi: 10.1007/s11998-012-9441-7
[9] 李敏, 洪剑寒, 刘兵, 等. 芳纶/聚苯胺复合导电纤维的制备工艺探讨[J]. 丝绸, 2012,49:34-38.
LI Min, HONG Jianhan, LIU Bing, et al. Discussion on production technology of PPTA/PANI composite conductive fiber[J]. Journal of Silk, 2012,49:34-38.
[10] 邵亮, 李晓阳, 张旭霞. 改性芳纶/聚苯胺复合导电纤维的制备[J]. 功能高分子学报, 2014,27:302-309.
SHAO Liang, LI Xiaoyang, ZHANG Xuxia. Preparation of modified aramid/polyaniline composite conductive fiber[J]. Journal of Functional Polymers, 2014,27:302-309.
[11] HONG J H, PAN Z J, TIAN L, et al. Continuous fabrication of conductive UHMWPE yarns based on in-situ polymerization with different doping acids[J]. Synthetic Metals, 2015,209(11):512-520.
[12] 洪剑寒, 韩潇, 彭蓓福, 等. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017,38(2):42-48.
HONG Jianhan, HAN Xiao, PENG Beifu, et al. Electrical and mechanical properties of conductive polytrimethylene terephthalate/polyaniline composite yarns[J]. Journal of Textile Research, 2017,38(2):42-48.
[13] 韩潇, 洪剑寒, 惠林, 等. 导电涤纶纱连续制备工艺与性能[J]. 纺织学报, 2018,39(2):129-134.
HAN Xiao, HONG Jianhan, HUI Lin, et al. Continuous preparation and properties of conductive polyester/polyaniline composite yarns[J]. Journal of Textile Research, 2018,39(2):129-134.
[14] HONG J H, HAN X, SHI H P, et al. Preparation of conductive silk fibroin yarns coated with polyaniline using an improved method based on in situ polymerization[J]. Synthetic Metals, 2018,235(1):89-96.
[15] 史韩萍, 吴小娟, 韩潇, 等. 芳纶/聚苯胺复合导电纱制备与性能[J]. 印染, 2017,43(24):38-41,62.
SHI Hanping, WU Xiaojuan, HAN Xiao, et al. Preparation and properties of conductive PPTA/PANI composite yarns[J]. China Dyeing & Finishing, 2017,43(24):38-41,62.
[16] KIM B R, LEE H K, PARK S H. Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films[J]. Thin Solid Films, 2011,519:3492-3496.
[1] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[2] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[3] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[4] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[5] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[6] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[7] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[8] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[9] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/ 聚苯胺/ 聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[10] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[11] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[12] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[13] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[14] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[15] 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/ 苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!