纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 153-158.doi: 10.13475/j.fzxb.20181007006

• 机械与器材 • 上一篇    下一篇

转杯纺旁路通道设计对成纱质量的影响

林惠婷1(), 高备2, 张玉泽2, 史倩倩2, 汪军2   

  1. 1.泉州师范学院 纺织与服装学院, 福建 泉州 362000
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-10-31 修回日期:2018-11-17 出版日期:2019-02-15 发布日期:2019-02-01
  • 作者简介:林惠婷(1989—),女,副教授,博士。主要研究方向为新型纺纱技术中的气流流动及纤维运动。E-mail: linht1218@126.com
  • 基金资助:
    国家自然科学基金项目(11802161)

Effect of bypass channel on rotor-spun yarn properties in rotor spinning

LIN Huiting1(), AKANKWASA Nicholus Tayari2, ZHANG Yuze2, SHI Qianqian2, WANG Jun2   

  1. 1. College of Textile and Fashion, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-10-31 Revised:2018-11-17 Online:2019-02-15 Published:2019-02-01

摘要:

为减小或消除在输纤通道入口处产生的气流漩涡以降低其对纤维形态产生的不良影响,通过在输纤通道长轴一侧设置旁路通道向输纤通道补气,并采用数值模拟方法研究设置有旁路通道的气流场分布,结合纺纱试验和纤维形态测试,研究该旁路通道对改善气流场分布及转杯成纱性能的效果。结果表明:采用旁路通道进行补气可消除输纤通道入口处的气流漩涡,提高纤维剥取区的气流速度,从而提高纤维剥离牵伸倍数;设置有旁路通道的转杯纺纱器对提高成纱断裂强度具有良好的作用,对降低凝聚槽中弯钩纤维的数量有一定的效果,说明消除气流漩涡和提高纤维剥离牵伸倍数有助于纤维形态的改善,从而提高成纱断裂强度。

关键词: 转杯纺, 输纤通道, 旁路通道, 气流, 成纱质量, 纤维形态

Abstract:

In order to reduce or eliminate the vortices generated at the transport channel inlet so as to decrease its adverse effect on fiber configuration, a bypass channel located on the extension of the long side of the transport channel was introduced as an air supply channel. The numerical simulation method was adopted to study the airflow dynamics of the modified transport channel. Combining with the spinning tests and fiber configuration tests, the effectiveness of the bypass channel in improving the airflow field and rotor spun-yarn properties was evaluated. The results show that by adopting the bypass channel, the vortices generated at the transport channel can be eliminated, and the air velocity in fiber separation area is increased, thus increasing the fiber peeling-drawing ratio. The rotor spinning machine with the bypass channel has a positive effect on improving the yarn tenacities as well as decreasing the number of hook fibers in the rotor groove. This indicates that eliminating the vortices and increasing the fiber peeling-drawing ratio are beneficial to fiber morphology, thus improving the yarn fracture strength.

Key words: rotor spinning, transport channel, bypass channel, airflow, yarn quality, fiber configuration

中图分类号: 

  • TS104.1

图1

旁路通道示意图"

图2

几何计算模型及边界条件"

图3

输纤通道不同截面气流流线图"

图4

传统与改进转杯纺纱器的纤维剥取区不同截面处的速度分布云图 注:单位为m/s。"

表1

纺纱参数"

所用原料 原料参数 纱线线
密度/tex
纺纱工艺参数 温度/
湿度/
%
纤维长
度/mm
纤维线密
度/dtex
条子定
量/tex
分梳辊转速/
(r·min-1)
转杯转速/
(r·min-1)
引纱速度/
(r·min-1)
29 1.8 4 200 34 6 500 51 000 61.11 30 ± 2 50 ± 2
4 200 42 68.75
粘胶 38 1.67 4 312 34 60.44
棉/粘胶(50/50) - - 3 250 34 60.44

图5

纤维的形态分类"

图6

纤维扫描图像及经过MatLab处理的图像"

表2

成纱断裂强度对比"

纺纱器
类别
34 tex
棉纱
42 tex
棉纱
34 tex
粘胶纱
34 tex
混纺纱
传统 13.80 13.62 7.99 9.86
改进 15.59 15.04 8.67 10.61

表3

不同纱线的断裂强度T检验方差分析"

纱线类别 F P
34 tex棉纱 51.72 0.000
42 tex棉纱 31.67 0.000
34 tex粘胶纱 22.77 0.000
34 tex棉/粘胶混纺纱 18.34 0.000

表4

成纱CV值对比"

纺纱器
类别
34 tex
棉纱
42 tex
棉纱
34 tex
粘胶纱
34 tex
混纺纱
传统 14.29 13.97 14.44 17.42
改进 15.63 14.34 15.0 17.18
显著性检验 AB AA AA AA

表5

成纱细节(-50%)对比"

纺纱器
类别
34 tex
棉纱
42 tex
棉纱
34 tex
粘胶纱
34 tex
混纺纱
传统 18 4 4 36.7
改进 2 20 8 28.89
显著性检验 AB AA AA AA

表6

成纱粗节(+50%)对比"

纺纱器
类别
34 tex棉纱 42 tex
棉纱
34 tex
粘胶纱
34 tex
混纺纱
传统 92 32 22 75.56
改进 48 30 22 72.2
显著性检验 AB AA AA AA

表7

成纱棉节(+280%)对比"

纺纱器
类别
34 tex棉纱 42 tex
棉纱
34 tex
粘胶纱
34 tex
混纺纱
传统 38 10 28 16.67
改进 6 2 30 6.67
显著性检验 AB AA AA AA

表8

毛羽指数对比"

类别 34 tex
棉纱
42 tex
棉纱
34 tex
粘胶纱
34 tex
混纺纱
传统 4.88 11 8.64 11.62
改进 5.64 9.86 4.54 4.94
显著性检验 AA AA AB AB

表9

不同形态的纤维所占比例"

纤维类别 1 2 3 4 5 6 7 8
传统 0 43.28 8.96 15.67 2.99 13.43 10.45 5.22
改进 0 54.34 5.20 8.09 2.89 12.72 11.56 5.20
[1] DAS A, ALAGIRUSAMY R. Fundamental principles of open end yarn spinning[J]. Advances in Yarn Spinning Technology, 2010: 79-101.
[2] LAWRENCE C A, CHEN K Z. A study of the fibre-transfer-channel design in rotor-spinning: part II: optimization of the transfer-channel design[J]. Journal of the Textile Institute, 1988,79(3):393-408.
[3] LAWRENCE C A, CHEN K Z. A Study of the fibre-transfer-channel design in rotor-spinning: part I: the fibre trajectory[J]. Journal of the Textile Institute, 1988,79(3):367-392.
[4] 张礼会, 张百祥. 转杯纺纤维输送管道的研究[J]. 中国纺织大学学报, 1991,17(6):16-24.
ZHANG Lihui, ZHANG Baixiang. A study of fiber transfer channel in rotor spinning[J]. Journal of China Textile University, 1991,17(6):16-24.
[5] KONG L X, PLATFOOT R A. Two-dimensional simulation of air flow in the transfer channel of open-end rotor spinning machines[J]. Textile Research Journal, 1996,66(10):641-650.
[6] LIN H T, BERGADA J M, ZENG Y C, et al. Rotor spinning transfer channel design optimization via computational fluid dynamics[J]. Textile Research Journal, 2018,88(11):1244-1262.
[7] KONG L X, PLATFOOT R A. Fibre transportation in confined channel with recirculations[J]. Computers & Structures, 2000,78(1):237-245.
[8] KONG L X, PLATFOOT R A. Computational two-phase air/fiber flow within transfer channels of rotor spinning machines[J]. Textile Research Journal, 1997,67(4):269-278.
[9] 上海市纺织科学研究院. 气流纺纱理论与实践 [M]. 上海: 上海科学技术出版社, 1984: 35-62.
Shanghai Institute of Textile Science. Theory and Practice of Rotor Spinning [M]. Shanghai: Shanghai Scientific and Technical Publishers, 1984: 35-62.
[10] LAWRENCE C A, JIANG R K. A study of the mechanics of fibre-straightening during deposition in the disc-spinning process. part I: theoretical conside-ration[J]. Journal of the Textile Institute, 1996,87(1):23-36.
[11] LAWRENCE C A, CHEN K Z. 16-high-speed photographic studies of the fibre configuration during transfer from the opening roller of a rotor-spinning unit[J]. Journal of the Textile Institute, 1986,77(3):201-211.
[1] 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38.
[2] 刘宜胜, 徐光逸. 斜吹气流入射角对纱线折入的影响[J]. 纺织学报, 2020, 41(07): 72-77.
[3] 马晓琳, 唐新军, 宋均燕, 刘霞, 张玉高. 集聚纺气流导向元件的偏移对集聚效果的影响[J]. 纺织学报, 2019, 40(09): 42-47.
[4] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175-180.
[5] 邓茜茜, 杨瑞华, 徐亚亚, 高卫东. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(07): 31-37.
[6] 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139.
[7] 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167.
[8] 杨瑞华, 徐亚亚, 韩瑞叶, 薛元, 高卫东. 多通道转杯纺混色纱的Friele配色模型[J]. 纺织学报, 2019, 40(03): 44-48.
[9] 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68.
[10] 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(01): 52-56.
[11] 何吉欢 李晓霞 田丹. 气泡纺技术及其纳米纤维的工业化生产[J]. 纺织学报, 2018, 39(12): 175-180.
[12] 杨瑞华 韩瑞叶 徐亚亚 薛元 王鸿博 高卫东. 数码转杯纺混色纱中有色纤维混合效果分析[J]. 纺织学报, 2018, 39(07): 32-38.
[13] 刘宜胜 裘燚斌 吴震宇. 气动折入装置异向射流场中纱线的运动规律[J]. 纺织学报, 2018, 39(07): 122-129.
[14] 徐亚亚 杨瑞华 韩瑞叶 薛元 高卫东. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018, 39(06): 36-41.
[15] 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!