纺织学报 ›› 2019, Vol. 40 ›› Issue (02): 82-86.doi: 10.13475/j.fzxb.20180405905

• 纺织工程 • 上一篇    下一篇

玄武岩织物增强聚乳酸复合材料的制备及其拉伸断裂性能

余娟娟, 刘淑强(), 吴改红, 阴晓龙   

  1. 太原理工大学 轻纺工程学院, 山西 太原 030600
  • 收稿日期:2018-04-25 修回日期:2018-11-15 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 刘淑强
  • 作者简介:余娟娟(1992—),女,硕士生。主要研究方向为纺织材料与纺织品设计。
  • 基金资助:
    山西省高等学校科技创新项目(2015125);山西省高等学校大学生创新创业训练计划项目(2018099)

Preparation and tensile fracture properties of basalt fabric reinforced polylactic acid composites

YU Juanjuan, LIU Shuqiang(), WU Gaihong, YIN Xiaolong   

  1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030600, China
  • Received:2018-04-25 Revised:2018-11-15 Online:2019-02-15 Published:2019-02-01
  • Contact: LIU Shuqiang

摘要:

为提高聚乳酸复合材料的力学性能,以玄武岩织物(BF)为增强材料,聚乳酸(PLA)为基体材料,采用真空灌注法制备玄武岩织物增强聚乳酸复合材料。研究了偶联剂KH550质量分数、铺层层数、铺层角度对BF/PLA复合材料拉伸断裂性能的影响,并借助扫描电子显微镜对复合材料拉伸实验后的断裂形貌图进行分析。结果表明:随着KH550质量分数的增加,BF/PLA复合材料的拉伸断裂强度出现先增大后减小的趋势,且KH550质量分数为3%时处理效果最佳,此时复合材料的拉伸断裂强度提高到82 MPa,且断面整齐;玄武岩织物铺层角度为0°和90°时,复合材料的拉伸断裂性能较优,45°铺设时最差,且拉伸实验后层间分离现象明显;在一定范围内复合材料的断裂强度随玄武岩织物铺层层数的增加而增加。

关键词: 玄武岩织物, 聚乳酸, 复合材料, 硅烷KH550, 铺层角度, 铺层层数, 拉伸断裂性能

Abstract:

In order to improve the mechanical properties of polylactic acid(PLA)composites, basalt fabric(BF)reinforced polylactic acid composites were prepared by vacuum infusion method. The effects of mass fraction of coupling agent KH550, laying angle and the layer number on the properties of the composite were studied, and the fracture morphology of the composite after tensile test was observed by scanning electron microscope. The results show that the tensile fracture strength of the composite increased first and then decreased with the increase of KH550 mass fraction. The best treatment effect of KH550 was 3%, the tensile strength of composite was increased to 82 MPa, and the section of the composite was neat after tensile test. The tensile fracture performance of the composite was better when the laying angle were 0° and 90°, and the worst was 45°, and the phenomenon of interlaminar separation was obvious. Meanwhile, with increase of the layer number of basalt fabric in a certain range, the tensile fracture strength of the composite risse.

Key words: basalt fabric, poly lactic acid, composite, coupling agent KH550, laying angle, layer number, tensile fracture property

中图分类号: 

  • TB332

图1

KH550质量分数对拉伸断裂性能的影响"

图2

不同质量分数KH550处理后复合材料的拉伸断面扫描电镜照片(×200)"

图3

铺层角度对拉伸断裂性能的影响"

图4

不同铺层角度复合材料拉伸断裂扫描电镜照片(×200)"

图5

铺层层数对拉伸断裂性能影响"

[1] 李旭明, 孙西超, 师利芬. 增强增韧聚乳酸纤维的制备及其性能[J]. 纺织学报, 2017,38(4):12-15.
LI Xuming, SUN Xichao, SHI Lifen. Preparation and properties of reinforcing and toughened polylactic acid fiber[J]. Journal of Textile Research, 2017,38(4):12-15.
[2] RAY S S, OKAMOTO M. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites[J]. Macromolecular Rapid Communications, 2010,24(14):815-840.
[3] 陈美玉, 来侃, 孙润军, 等. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016,37(1):28-32.
CHEN Meiyu, LAI Kan, SUN Runjun, et al. Mechan-ical properties of hemp/polylactic acid composite foamed material[J]. Journal of Textile Research, 2016,37(1):28-32.
[4] 王世超, 相恒学, 费海燕, 等. 低聚物含量对聚乳酸熔纺成形工艺的影响[J]. 纺织学报, 2014,35(8):133-139.
WANG Shichao, XIANG Hengxue, FEI Haiyan, et al. Influence of oligomer content on melt spinning process of poly(L-lactic acid)[J]. Journal of Textile Research, 2014,35(8):133-139.
[5] HUDA M S, DRZAL L T, MISRA M, et al. A study on biocomposites from recycled newspaper fiber and poly (lactic acid)[J]. Industrial & Engineering Chemistry Research, 2005,44:5593-5601.
[6] 朱斐超, 于斌, 韩建, 等. 纺粘非织造用聚乳酸/聚(3-羟基基丁酸-co-3-羟基戊酸共聚酯)的可纺性[J]. 纺织学报, 2014,35(9):19-26.
ZHU Feichao, YU Bin, HAN Jian, et al. Spinnability of poly(Lacticacid)/ poly(3-hydroxybutyrate-co-3-hydroxy Valerate) for spun-bonded nonwovens[J]. Journal of Textile Research, 2014,35(9):19-26.
[7] 李晶晶, 赵泾峰, 孙景荣, 等. 甲壳素纳米纤维/聚乳酸复合材料的制备及性能[J]. 高分子材料科学与工程, 2017,33(3):162-166.
LI Jingjing, ZHAO Jingfeng, SUN Jingrong, et al. Pre-paration and properties of chitin nanofibers/polylactic acid composites[J]. Polymer Materials Science and Engineering, 2017,33(3):162-166.
[8] 张建, 何春霞, 唐辉, 等. 三种植物纤维填充聚乳酸复合材料性能对比[J]. 工程塑料应用, 2016,44(11):12-16.
ZHANG Jian, HE Chunxia, TANG Hui, et al. Performance comparison of three kinds of plant fibers modified polylactic acid composites[J]. Engineering Plastics Application, 2016,44(11):12-16.
[9] GURYNATHAN T, MOHANTY S, NAYAK S K, et al. A review of the recent developments in biocomposites based on natural fibers and their application perspec-tives[J]. Composites Part A, 2015,77:1-25.
[10] 李新娥. 玄武岩纤维和织物的研究进展[J]. 纺织学报, 2010,32(1):145-150.
LI Xin'e. Research progress of basalt fiber and fabrics[J]. Journal of Textile Research, 2010,32(1):145-150.
[11] DHAND V, MITTAL G, RHEE K Y, et al. A short review on basalt fiber reinforced polymer compo-sites[J]. Composites Part B, 2015,73:166-180.
[12] LIU T, YU F, YU X, et al. Basalt fiber reinforced and elastomer toughened polylactide composites: mechanical properties, rheology, crystallization, and morp-hology[J]. Journal of Applied Polymer Science, 2012,125:1292-1301.
[13] 陈曦. 玄武岩纤维在硬组织修复材料中的应用研究[D]. 南京: 东南大学, 2010: 34-50.
CHEN Xi. Application of basalt fibers in hard tissue repair materials[D]. Nanjing: Southeast University, 2010: 34-50.
[14] 吕丽华, 刘桂彬, 孙艳丽. 阻燃型玄武岩织物/聚乳酸复合材料的研制[J]. 纺织学报, 2013,34(1):20-23.
LÜ Lihua, LIU Guibin, SUN Yanli. Preparation of flame retardant basalt fiber fabric/polylactic acid composite[J]. Journal of Textile Research, 2013,34(1):20-23.
[15] KILBY W F. Planar stress-strain relationships in woven fabrics[J]. Journal of the Textile Institute Transactions, 1963,54(1):T9-T2.
[1] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[2] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[3] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[4] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[5] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[6] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[7] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[8] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[9] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[10] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[11] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[12] 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/ 苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57.
[13] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[14] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[15] 赵颖会, 顾迎春, 胡斐, 林佳友, 叶蓝琳, 李静静, 陈胜. 芳香族聚酰胺纳米纤维复合材料研究进展 [J]. 纺织学报, 2020, 41(01): 184-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!