纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 109-117.doi: 10.13475/j.fzxb.20171202310

• 染整与化学品 • 上一篇    下一篇

光催化剂负载酰肼基活性炭除甲醛材料的制备

张义安1, 狄剑锋1,2()   

  1. 1.江南大学 纺织服装学院, 江苏 无锡 214122
    2.五邑大学 纺织服装学院, 广东 江门 529020
  • 收稿日期:2017-12-11 修回日期:2018-11-05 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 狄剑锋
  • 作者简介:张义安(1982—),男,博士生。主要研究方向为纺织功能材料和新技术。

Preparation of photocatalyst loaded activated carbon grafted with polyhydrazide for removing formaldehyde

ZHANG Yian1, DI Jianfeng1,2()   

  1. 1. College of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. College of Textile and Clothing, Wuyi University, Jiangmen, Guangdong 529020, China
  • Received:2017-12-11 Revised:2018-11-05 Online:2019-03-15 Published:2019-03-15
  • Contact: DI Jianfeng

摘要:

为解决甲醛污染生活环境的问题,利用缩合反应将聚酰肼(PAH)接枝到硝酸改性的活性炭上制备聚酰肼接枝活性炭(ACm-g-PAH),为消除其可能存在的二次污染,负载锰银掺杂纳米二氧化钛可见光光催化剂 (Mnx/Agy-TiO2)于ACm-g-PAH表面,进一步组装了自净化除甲醛材料锰银掺杂纳米二氧化钛负载聚酰肼接枝活性炭(Mnx/Agy-TiO2-l-ACm-g-PAH)。借助扫描电子显微镜、红外光谱仪对Mnx/Agy-TiO2-l-ACm-g-PAH的外观形貌和化学成分进行分析;通过软件Originpro 8.5将其催化甲醛数据与动力学方程进行拟合,并研究了其催化甲醛的动力学规律;对比分析了活化时间、活化温度和N,N-二环己基碳二亚胺(DCC)浓度对Mnx/Agy-TiO2-l-ACm-g-PAH材料甲醛移除率的影响机制。结果表明:当活化时间为2 h,活化温度为650 ℃,DCC用量为活性炭质量的2%,PAH浓度为11 mmol/L时,所制备材料Mnx/Agy-TiO2-l-ACm-g-PAH的甲醛移除率为99.6%;甲醛质量浓度在5~28.2 mg/g的范围内,Mnx/Agy-TiO2-l-ACm-g-PAH的甲醛移除率呈现衰减趋势;经过10次清洗后,材料的自净化能力减少为原来的12%。

关键词: 可见光, 除甲醛材料, 活性炭, 动力学, 光催化

Abstract:

In order to solve the problem of pollution due to formaldehyde, PAH grafted activated carbon (ACm-g-PAH)was prepared by the condensation reaction of grafting polyhydrazide onto nitric acid-modified activated carbon. Then, the self-purifying removal formaldehyde material of Mnx/Agy-TiO2-l-ACm-g-PAH (photocatalyst Mnx/Agy-TiO2 loaded PAH grafted activated carbon) was further assembled to eliminate the possibly secondary pollution by loading Mnx/Agy-TiO2(Mn and Ag co-doped nano-TiO2) on the surface of ACm-g-PAH. The morphology and chemical composition of Mnx/Agy-TiO2-l-ACm-g-PAH were characterized by scanning electron microscopy. And then the catalytic formaldehyde data was fitted to the kinetic equation by software Originpro 8.5 and the dynamic law of catalytic formaldehyde for Mnx/Agy-TiO2-l-ACm-g-PAH was studied. The influences of activation time, activation temperature and N,N-Dicyclohexylcarbodiimide(DCC) concentration on the formaldehyde removal rate of Mnx/Agy-TiO2-l-ACm-g-PAH materials were compared . The test results show that when the activation time is 2 h, the activation temperature is 650 ℃, DCC is 2% of the mass of activated carbon, and PAH is 11 mmol/L, its removal formaldehyde rate of the Mnx/Agy-TiO2-l-ACm-g-PAH is 99.6%. When the formaldehyde concentration loading is in the range of 5-28.2 mg/g, the formaldehyde removal rate of Mnx/Agy-TiO2-l-ACm-g-PAH show a tendency to decrease. After cleaning for 10 cycles, the self-purifying capability of the material is reduced to 12%.

Key words: visible light, formaldehyde removing material, activated carbon, kinetics, photocatalysis

中图分类号: 

  • TS194.5

图1

反应器结构示意图 1—循环泵;2—阀门;3—流量仪;4—载物管(活性炭滤网);5—循环进气口;6—白炽灯;7—紫外灯;8—开关;9—甲醛测试仪;10—进样口;11—循环出气口;12—载物台;13—加热环;14—温湿度仪;15—加湿器;16—圆底烧瓶;17—水浴锅;18—输气软管;19—夹子(阀门作用)。"

图2

活化温度对Mnx/Agy-TiO2-l-ACm-g-PAH除甲醛的影响"

图3

活化时间对Mnx/Agy-TiO2-l-ACm-g-PAH除甲醛的影响"

表1

ACm与Mnx/Agy-TiO2质量比对Mnx/Agy-TiO2-l-ACm-g-PAH除甲醛的影响"

ACm与Mnx/Agy-TiO2的质量比 甲醛移除率/%
60∶1 57.2
50∶1 62.6
40∶1 72.8
30∶1 75.5
20∶1 78.8
10∶1 79.7
5∶1 79.3

图4

PAH浓度对Mnx/Agy-TiO2-l-ACm-g-PAH除甲醛的影响"

图5

DCC质量分数对Mnx/Agy-TiO2-l-ACm-g-PAH除甲醛的影响"

图6

温度对除甲醛的影响"

图7

甲醛浓度对除甲醛的影响"

图8

洗涤次数对除甲醛的影响"

图9

不同材料的甲醛移除率"

图10

Mnx/Agy-TiO2-l-ACm-g-PAH与ACm 的扫描电镜照片"

图11

PAH和Mnx/Agy-TiO2-l-ACm-g-PAH的红外光谱图"

图12

ACm 与Mnx/Agy-TiO2-l-ACm-g-PAH的XPS曲线"

表2

ACm和Mnx/Agy-TiO2-l-ACm-g-PAH样品表面元素组成"

样本 元素相对含量/% 原子比 结合能/eV
C N O N与C O与C N1s O1s
ACm 97.92 0.12 1.96 0.001 23 0.020 01 418.11 532.44
Mnx/Agy-TiO2-l-ACm-g-PAH 96.38 2.21 1.41 0.022 93 0.014 62 392.16 532.10

图13

活化温度为650 ℃的Mnx/Agy-TiO2-l-ACm材料的XRD图谱"

表3

不同湿度条件下Mnx/Agy-TiO2-ACm-g-PAH光催化的动力学特性"

时间/
h
甲醛浓度/(mg·g-1)
相对湿度65% 相对湿度74% 相对湿度82%
0 15.80 15.80 15.80
1 13.20 13.00 13.20
3 13.60 12.60 12.10
5 12.41 11.91 11.43
7 10.78 11.20 10.72
9 10.53 10.53 10.19
10 9.91 9.63 9.23
12 9.14 8.84 8.18
14 8.32 7.52 7.12
16 7.21 6.81 6.16
18 5.84 4.92 4.53
20 4.63 3.63 3.23
22 3.31 2.21 2.03
24 2.72 2.02 1.28

表4

Mnx/Agy-TiO2-l-ACm-g-PAH除甲醛的动力学拟合结果"

相对湿度/% k R2
45 0.053 75 0.928 2
65 0.059 19 0.961 2
80 0.063 91 0.995 5
[1] 冯雅妮, 张梅, 罗胜利, 等. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017,38(12):106-110.
FENG Yani, ZHANG Mei, LUO Shengli, et al. Low temperature bonding preparation of functionalized ramie fabrics for formaldehyde photocatalytic degradation[J]. Journal of Textile Research, 2017,38(12):106-110.
[2] 朱舜, 姚玉元, 林启松, 等. 活性炭纤维负载金属铂的制备及催化氧化甲醛[J]. 纺织学报, 2014,35(2):1-5.
ZHU Shun, YAO Yuyuan, LIN Qisong, et al. Catalytic oxidation of formaldehyde by activated carbon fibers supported platinum[J]. Journal of Textile Research, 2014,35(2):1-5.
doi: 10.1177/004051756503500101
[3] CORONADO JM, ZORN ME, TEJEDOR I, et al. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor[J]. Applied Catalysis B: Environmental, 2003(43):329-344.
[4] FUJISHIMA A, RAO T N, TRYK Da. TiO2 photo-catalysts and diamond electrode[J]. Electrochimica Acta, 2000(45):4683-4690.
[5] 郑红, 汤鸿霄, 王怡中. 有机污染物半导体多相光催化氧化机理及动力学研究进展[J]. 环境科学进展, 1996,4(3):1-18.
ZHENG Hong, TANG Hongxiao, WANG Yizhong. Research progress on oxidation mechanism and kinetics of semiconductor sheterogeneous photocatalytic for organic pollutants[J]. Advance Environmental Science, 1996,4(3):1-18.
[6] 侯一宁, 王安, 王燕. 二氧化钛-活性炭纤维混合材料净化室内甲醛污染[J]. 四川大学学报, 2004(36):41-44.
HOU Yining, WANG An, WANG Yan. Removing formaldehyde from indoor gas by TiO2-active carbon fiber compound materials[J]. Journal of Sichuan University, 2004(36):41-44.
[7] ICHIURA H, KITAOKA T, TANAKA H. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique[J]. Chemosphere, 2003(50):79-83.
[8] MATSUO Y, NISHINO Y, FUKUTSUKA T, et al. Introduction of amino groups into the interlayer space of graphite oxide using 3-aminopropylethoxysilanes[J]. Carbon, 2007(45):1384-1390.
[9] MATSUO Y, NISHINO Y, FUKUTSUKA T, et al. Removal of formaldehyde from gas phase by silylated graphite oxidecontaining amino groups[J]. Carbon, 2008(46):1162-1163.
[10] 郑丹丹, 周建凤, 张光先, 等. 无甲醛衬布胶水的制备及其应用[J]. 纺织学报, 2016,37(1):81-84.
ZHENG Dandan, ZHOU Jianfeng, ZHANG Guangxian, et al. Preparation of formaldehyde free glue for lining and its application[J]. Journal of Textile Research, 2016,37(1):81-84.
[11] SAEUNG S, BOONAMNUAYVITAVA V. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials[J]. Journal of Environmental Sciences, 2008(20):379-84.
[12] TANADA S, KAWASAKI N, NAKAMURA T, et al. Removal of formaldehyde by activated carbon containing amino groups[J]. Journal of Colloid Interface Science, 1999(214):106-108.
[13] 黄垒, 彭峰. 可见光光催化机理研究进展[J]. 工业催化, 2007,15(3):5-9.
HUANG Lei, PENG Feng. Researches in photocatalytic mechanism under visible-light[J]. Industry Catalyst, 2007,15(3):5-9.
[14] 陈仁忠, 胡毅, 袁菁红, 等. 静电纺MnO2/ PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015,36(5):1-6.
CHEN Renzhong, HU Yi, YUAN Jinghong, et al. Preparation of electrospun MnO2/ PAN nanofibers and catalytic oxidation on formaldehyde[J]. Journal of Textile Research, 2015,36(5):1-6.
doi: 10.1177/004051756603600101
[15] 方晓明, 张正国, 陈清林. 具可见光活性的氮掺杂二氧化钛光催化剂[J]. 化学进展, 2007,19:1282-1290.
FANG Xiaoming, ZHANG Zhengguo, CHEN Qinglin. Nitrogen doped TiO2 photocatalysts with visible-light activity[J]. Progress in Chemistry, 2007,19:1282-1290.
[16] TAMAI H, SHIRAKI K, SHIONO T, et al. Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine[J]. Journal of Colloid Interface Science, 2006(295):299-302.
[17] AMAMA PB, ITOH K, MURABAYASHI M. Photoca- talyti coxidation of trichloroethylene in humidified atmosphere[J]. Journal of Molecular Catalysis A: Chemical, 2001(176):165-172.
[1] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R 的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[2] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[3] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19 在超临界CO2 及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
[4] 杨小兵, 程钧, 张守鑫, 姚红, 陆林, 丁松涛. 口罩过滤效率检测用颗粒物粒径的换算和标准比对[J]. 纺织学报, 2020, 41(08): 152-157.
[5] 宋慧君, 翟亚丽, 钞意元, 朱超宇. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(06): 81-85.
[6] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/ 水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[7] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[8] 吴伟, 陈小文, 钟毅, 徐红, 毛志平. 硫酸钠在低带液轧-焙-蒸活性染料染色中的作用[J]. 纺织学报, 2020, 41(05): 85-93.
[9] 钱成, 刘燕卿, 刘新金, 谢春萍, 苏旭中. 四罗拉集聚纺纱系统纤维运动数值模拟与分析[J]. 纺织学报, 2020, 41(03): 39-44.
[10] 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178.
[11] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[12] 崔桂新, 董永春, 王鹏. 羊毛/铁配合物非均相芬顿反应光催化剂的制备及其应用性能[J]. 纺织学报, 2019, 40(12): 68-73.
[13] 庄帅, 阳海, 安继斌, 胡倩, 张浩, 贺贵添, 易兵. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019, 40(11): 131-139.
[14] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[15] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!