纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 118-124.doi: 10.13475/j.fzxb.20180302507

• 染整与化学品 • 上一篇    下一篇

膨润土负载锌-钴催化臭氧处理模拟染料废水

孙慧萍, 吕文洲()   

  1. 宁波大学 建筑工程与环境学院, 浙江 宁波 315211
  • 收稿日期:2018-03-10 修回日期:2018-12-03 出版日期:2019-03-15 发布日期:2019-03-15
  • 通讯作者: 吕文洲
  • 作者简介:孙慧萍(1994—),女,硕士生。主要研究方向为工业废水处理。
  • 基金资助:
    宁波市自然科学基金资助项目(2017A610298)

Bentonite supported Zn-Co ozone catalyst for treatment of simulated dye wastewater

SUN Huiping, LÜ Wenzhou()   

  1. Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, Zhejiang 315211, China
  • Received:2018-03-10 Revised:2018-12-03 Online:2019-03-15 Published:2019-03-15
  • Contact: Lü Wenzhou

摘要:

为获得高效的臭氧催化剂,以膨润土作为载体,选择Fe3+、Cu2+、Mn2+、Ni2+、Co2+、Zn2+为活性组分,通过溶液混合法制备负载型催化剂,并以酸性大红模拟印染废水探讨负载型催化剂在催化氧化体系中对酸性大红的降解速率及动力学特点,最终筛选得到最优活性组分;根据正交试验设计获得催化剂最佳制备条件,并通过X射线衍射仪和扫描电子显微镜对其进行表征。试验结果表明:最佳双组分催化剂为膨润土负载Zn-Co催化剂;膨润土负载Zn-Co半峰宽小,晶型好;双组分催化剂最佳制备条件为:煅烧温度400 ℃,煅烧时间3 h,组分浓度1.2 mol/L,锌钴的量比1∶1,淀粉质量1.5 g(对应60 g膨润土)。用在此条件下制得的催化剂处理模拟染料废水时,通入臭氧反应10 min,即可去除 99.92%的酸性大红;且催化剂重复利用4次后,其去除率仍达81.44%。

关键词: 膨润土, Zn-Co催化剂, 臭氧催化剂, 酸性大红, 染料废水

Abstract:

In order to obtain an efficient ozone catalyst, bentonite was used as carrier, and Fe3+, Cu2+, Mn2+, Ni2+, Co2+ and Zn2+ were selected as active components to prepare supported catalysts by a solution mixing method. The influence of supported catalysts on degradation rate and kinetic characteristics of acid red in catalytic oxidation system were studied, and then the best active components were obtained. According to orthogonal experimental design, the best catalyst preparation conditions were achieved, and characterized by X-ray diffraction and scanning electron microscopy. The results show that the best two-component catalyst is bentonite supported Zn-Co. The optimum conditions for the preparation of the two-component catalyst are as followed: the calcination temperature is 400 ℃, calcination time is 3 h, component concentration is 1.2 mol/L, mole ratio of Zn and Co is 1∶1 and starch content is 1.5 g (in terms of 60 g bentonite). The catalyst prepared under the conditions catalyzes the oxidation of acid red with ozone, and the removal rate reaches 99.92% after 10 min of ozone reaction. After the catalyst is reused for 4 times, the removal rate still reaches 81.44%.

Key words: bentonite, zinc-cobalt catalyst, ozone catalyst, acid red, dye wastewater

中图分类号: 

  • TS19

图1

双组分催化剂对废水中酸性大红的去除率"

表1

双组分催化剂正交试验设计及结果"

试验
煅烧
温度/℃
煅烧
时间/
h
组分
浓度/
(mol·L-1)
Zn2+
Co2+
量比
淀粉
质量/
g
酸性
大红去
除率/
%
1# 300 2 1.0 2∶1 1.2 64.33
2# 300 3 1.2 1∶1 1.5 73.32
3# 300 4 1.4 1∶1.5 1.8 63.85
4# 300 5 1.6 1∶2 2.1 48.44
5# 400 2 1.0 1∶1.5 2.1 90.95
6# 400 3 1.2 1∶1 1.5 99.92
7# 400 4 1.6 2∶1 1.8 98.43
8# 400 5 1.4 1∶2 1.2 96.53
9# 500 2 1.4 1∶2 1.5 91.97
10# 500 3 1.6 1∶1.5 1.2 95.72
11# 500 4 1.0 1∶1 2.1 96.44
12# 500 5 1.2 2∶1 1.8 94.99
13# 600 2 1.6 1∶1 1.8 98.25
14# 600 3 1.4 2∶1 2.1 94.21
15# 600 4 1.2 1∶2 1.2 95.84
16# 600 5 1.0 1∶1.5 1.5 97.46
K1 61.735 86.375 88.742 87.990 88.655
K2 96.213 89.997 88.775 91.685 90.295
K3 94.780 88.640 87.190 86.995 88.457
K4 96.440 84.155 84.460 82.498 81.760
R 34.705 5.842 4.315 9.187 8.535

图2

最优催化剂催化氧化和单独臭氧氧化动力学曲线"

图3

双组分催化剂重复利用对酸性大红的去除率"

图4

最优催化剂和膨润土的XRD图谱 a—膨润土;b—Zn单组分催化剂;c—Zn-Co双组分催化剂。"

图5

膨润土和最优催化剂的扫描电镜照片(×7 000)"

[1] 贾艳萍, 姜成, 郭泽辉, 等. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017,38(8):172-180.
JIA Yanping, JIANG Cheng, GUO Zehui, et al. Research progress on deep treatment and recycling of dye wastewater[J]. Journal of Textile Research, 2017,38(8):172-180.
[2] 郑苗苗, 邵淑丽, 张东向, 等. 红平菇漆酶基因异源表达及对染料脱色的研究[J]. 纺织学报, 2014,35(12):84-90.
ZHENG Miaomiao, SHAO Shuli, ZHANG Dongxiang, et al. Heterologous expression of Pleurotus djamor laccase gene in pichia pastoris and decolorization on dyes by recombinant laccase[J]. Journal of Textile Research, 2014,35(12):84-90.
doi: 10.1177/004051756503500112
[3] KHORRAMFAR S, MAHMOODI N M, ARAMI M, et al. Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide[J]. Desalination, 2011,279(1-3):183-189.
doi: 10.1016/j.desal.2011.06.005
[4] 刘亚纳, 司岸恒, 苌永波. 催化臭氧氧化染料溶液的研究[J]. 环境工程学报, 2010,4(8):1846-1850.
LIU Yana, SI Anheng, CHANG Yongbo. Research on catalytic ozonation of dye solution[J]. Chinese Journal of Environmental Engineering, 2010,4(8):1846-1850.
[5] GUMUS D, AKBAL F. A comparative study of ozonation, iron coated zeolite catalyzed ozonation and granular activated carbon catalyzed ozonation of humic acid[J]. Chemosphere, 2017,174:218-231.
doi: 10.1016/j.chemosphere.2017.01.106 pmid: 28171838
[6] MARCE M, DOMENJOUD B, ESPLUGAS S, et al. Ozonation treatment of urban primary and biotreated wastewaters: impacts and modeling[J]. Chemical Engineering Journal, 2016,283:768-777.
doi: 10.1016/j.cej.2015.07.073
[7] WU J J, MURUGANANDHAM M, CHANG L T, et al. Catalytic ozonation of oxalic acid using SrTiO3 catal-yst[J]. Ozone Science & Engineering, 2011,33(1):74-79.
[8] 刘健松. 硝酸改性及金属负载活性炭催化臭氧氧化酸性大红3R研究[D]. 石家庄: 河北科技大学, 2013: 5-9.
LIU Jiansong. Research on ozone catalytic oxidation of acid red 3R by nitric acid modified and metal loaded activated carbon[D]. Shijiazhuang: Hebei University of Science and Technology, 2013: 5-9.
[9] 卢思颖, 孙中恩, 封莉, 等. T-FMSAC制备及其催化臭氧氧化去除p-CBA效能研究[J]. 中国环境科学, 2017,37(6):2139-2144.
LU Siying, SUN Zhongen, FENG Li, et al. Preparation of T-FMSAC and its catalytic ozonation performance on the removal of p-CBA in water[J]. China Environmental Science, 2017,37(6):2139-2144.
[10] 朱亚雄, 李之鹏, 王维业, 等. MnO2-MgO/AC催化剂对印染废水的臭氧催化氧化深度处理[J]. 水处理技术, 2017,43(11):121-128.
ZHU Yaxiong, LI Zhipeng, WANG Weiye, et al. Comparative study of advanced treatment technology for biochemical effluent of gallic acid processing waste-water[J]. Technology of Water Treatament, 2017,43(11):121-128.
[11] HUANG G, FENG P, FAN G, et al. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater[J]. Environmental Letters, 2016,51(8):626-633.
[12] ZHAO L, SUN Z, MA J, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009,43(6):2047-2053.
doi: 10.1021/es803125h pmid: 19368212
[13] ZHUANG H, HAN H, HOU B, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts[J]. Bioresource Technology, 2014,166(8):178-186.
doi: 10.1016/j.biortech.2014.05.056
[14] 马博, 杨永哲, 岳山, 等. 臭氧催化氧化法对尾矿淋溶液中氨氮的去除研究[J]. 工业水处理, 2017,37(1):57-60.
MA Bo, YANG Yongzhe, YUE Shan, et al. Study on the ammonia nitrogen removal in tailings leaching solution by catalytic ozonation method[J]. Industrial Water Treatment, 2017,37(1):57-60.
[15] 李庆, 张芸, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018,39(2):112-118.
LI Qing, ZHANG Yun, FAN Zenglu, et al. Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater[J]. Journal of Textile Research, 2018,39(2):112-118.
[16] 易兵, 胡倩, 杨辉琼, 等. 酸性红37光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018,39(6):81-88.
YI Bing, HU Qian, YANG Huiqiong, et al. Photocatalytic degradation kinetics optimization of acid red 37 by response surface method and transformation mechanism thereof[J]. Journal of Textile Research, 2018,39(6):81-88.
[17] 范文玉, 杨小峰, 李康, 等. 多孔ZnO/膨润土臭氧催化剂的制备及表征[J]. 环境工程, 2017,35(1):46-50.
FAN Wenyu, YANG Xiaofeng, LI Kang, et al. Preparation and characterization of the porous ZnO/bentonite ozone type catalyst[J]. Environmental Engineering, 2017,35(1):46-50.
[18] RIDA K, BENABBAS A, BOUREMMAD F, et al. Effect of calcination temperature on the structural characteristics and catalytic activity for propene combustion of sol-gel derived lanthanum chromite perovskite[J]. Applied Catalysis A General, 2007,327(2):173-179.
doi: 10.1016/j.apcata.2007.05.015
[19] 郜子兴, 姚璐霞, 杨文玲, 等. 用于臭氧催化氧化处理抗生素废水的催化剂的制备[J]. 工业水处理, 2017,37(3):52-55.
GAO Zixing, YAO Luxia, YANG Wenling, et al. Preparation of the catalysts used for treating antibiotic wastewater by ozone catalytic oxidation[J]. Industrial Water Treatment, 2017,37(3):52-55.
[20] 缪宏超, 陈远洋, 赵连英, 等. 负载氧化物的羊毛活性炭对模拟染料废水吸附效果[J]. 纺织学报, 2017,38(2):146-151.
MIAO Hongchao, CHEN Yuanyang, ZHAO Lianying, et al. Adsorption properties of oxide loaded wool activated carbon for simulated dye wastewater[J]. Journal of Textile Research, 2017,38(2):146-151.
[21] 张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/Al2O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016,36(10):3003-3009.
ZHANG Yaohui, TU Yong, TANG Min, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalysts[J]. China Environmental Science, 2016,36(10):3003-3009.
[22] 郭琳, 刘晨, 吴叶, 等. MgO催化臭氧氧化水中氨氮的研究[J]. 工业水处理, 2017,37(6):48-51.
GUO Lin, LIU Chen, WU Ye, et al. Study on the MgO catalytic ozonation of ammonia-nitrogen in water[J]. Industrial Water Treatment, 2017,37(6):48-51.
[23] 陈一萍, 潘吉特. 碳纳米管/铁氧化物复合材料对模拟染料废水的吸附脱色效果[J]. 纺织学报, 2016,37(10):89-93.
CHEN Yiping, PAN Jite. Preparation of carbon nanotubes/iron oxide composite adsorbents for treatment of dye-containing wastewater[J]. Journal of Textile Research, 2016,37(10):89-93.
doi: 10.1177/004051756703700204
[24] 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017,38(10):75-80.
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst[J]. Journal of Textile Research, 2017,38(10):75-80.
[25] XIE C, XU Z, YANG Q, et al. Enhanced photocatalytic activity of titania-silica mixed oxide prepared via basic hydrolyzation[J]. Materials Science & Engineering B, 2004,112(1):34-41.
[26] 冯玥, 石文静, 谭德俊, 等. 活性炭催化臭氧氧化处理染料废水生化出水研究[J]. 环境科学学报, 2013,33(10):2724-2729.
FENG Yue, SHI Wenjing, TAN Dejun, et al. Tertiary purification of biologically-treated effluent of dye-making wastewater by activated carbon catalytic ozonation[J]. Acta Scientiae Circumstantiae, 2013,33(10):2724-2729.
[27] SANCHEZ P M, VON G U, RIVERA-UTRILLA J. Efficiency of activated carbon to transform ozone into·OH radicals: influence of operational parameters[J]. Water Research, 2005,39(14):3189-3198.
doi: 10.1016/j.watres.2005.05.026 pmid: 16005933
[1] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[2] 徐红云, 于存, 苏帮. 一色齿毛菌对直接大红4BS 染料的脱色[J]. 纺织学报, 2020, 41(04): 78-83.
[3] 庄帅, 阳海, 安继斌, 胡倩, 张浩, 贺贵添, 易兵. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019, 40(11): 131-139.
[4] 李庆, 樊增禄, 张洛红, 李勇, 陈创勋. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019, 40(02): 141-146.
[5] 李庆 张莹 樊增禄 朱炜. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(02): 112-118.
[6] 徐万福 傅伟松 周乃锋 陈华祥 丁亚钢 . 分散染料自动连续化生产新工艺[J]. 纺织学报, 2016, 37(11): 80-85.
[7] 何华玲 张健飞 于志财 路艳华 林杰. 阳离子淀粉-膨润土复合絮凝剂对活性染料的吸附[J]. 纺织学报, 2014, 35(7): 101-0.
[8] 兰慧芳 邹专勇 朱卫红 支佳雯 喻佳丽. 颗粒活性炭对模拟活性染料废水的吸附脱色效果[J]. 纺织学报, 2013, 34(5): 70-75.
[9] 杜亮 李子燕 宁平 杜谨宏 左奇丽 姜浩. 利用水生植物处理染料废水的研究进展[J]. 纺织学报, 2012, 33(11): 146-152.
[10] 邵红;李佳琳;程慧. 钼酸铵改性膨润土的制备及其对碱性蓝染料的吸附[J]. 纺织学报, 2009, 30(02): 70-73.
[11] 陈世良;吕慎水;魏莉莉;姚玉元;陈文兴. 二氧化氯对活性染料的脱色[J]. 纺织学报, 2007, 28(3): 68-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!