纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 13-19.doi: 10.13475/j.fzxb.20180306307
JIN Shixin1, LIU Shuhua2, LIU Yan3(), ZHENG Yuansheng1, XIN Binjie1
摘要:
针对聚丙烯腈(PAN)耐热性能较差,聚砜酰胺(PSA)阻燃但染色性能较差等问题,在保持纺丝液质量分数、纺丝接收距离等条件不变的前提下,利用自制旋转式动态静电纺纱机,分别采用不同纺丝电压和不同接收器转速制备一系列聚丙烯腈/聚砜酰胺复合纳米纱线。借助扫描电子显微镜、单纱强力机、毛细管效应测定仪、傅里叶变换红外光谱仪和热重分析仪对复合纳米纱线的结构和性能进行表征。结果表明:纺丝电压和接收器转速对纳米纱线的形态影响比较明显,并进一步影响纱线的力学性能;当纺丝电压为25 kV、接收器转速为40 r/min时,纱线具有较好的外观形貌、力学性能和热性能;当接收器转速为60 r/min,纺丝电压为30 kV时,纳米纱线的芯吸性能最好。
中图分类号:
[1] |
FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592.
doi: 10.1016/S0032-3861(99)00068-3 |
[2] |
RENEKER D H, YARIN A L. Electrospinning jets and polymer nanofibers[J]. Polymer, 2008,49(10):2387-2425.
doi: 10.1016/j.polymer.2008.02.002 |
[3] |
SHAN H R, WANG X Q, SHI F H, et al. Hierarchical porous structured SiO2/SnO2 nanofibrous membrane with superb flexibility for molecular filtration[J]. ACS Applied Materials Interfaces, 2017,9(22):18966-18976.
pmid: 28509531 |
[4] |
FANG W Y, LIU L B, LI T, et al. Electrospun N-substituted polyurethane membranes with self-healing ability for self-cleaning and oil/water separation[J]. Chemistry: A European Journal, 2016,22(3):878-883.
doi: 10.1002/chem.201504340 |
[5] |
ZHANG P, SHAO C, ZHANG Z, et al. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol[J]. Nanoscale, 2011,3(8):3357-3363.
doi: 10.1039/c1nr10405e pmid: 21761072 |
[6] |
GORJI M, JEDDI A A A, GHAREHAGHAJI A A. Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications[J]. Journal of Applied Polymer Science, 2012,125(5):4135-4141.
doi: 10.1002/app.v125.5 |
[7] | WANG X Q, LI Y, LI X Q, et al. Equipment-free chromatic determination of formaldehyde by utilizing pararosaniline-functionalized cellulose nanofibrous membranes[J]. Sensors & Actuators B: Chemical, 2014,203:333-339. |
[8] |
SAETIA K, SCHNORR J M, MANNARINO M M, et al. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications[J]. Advanced Functional Materials, 2014,24(4):492-502.
doi: 10.1002/adfm.201302344 |
[9] |
IQBAL N, WANG X F, GE J L, et al. Cobalt oxide nanoparticles embedded in flexible carbon nanofibers: attractive material for supercapacitor electrodes and CO2 adsorption[J]. RSC Advances, 2016,6(57):52171-52179.
doi: 10.1039/C6RA06077C |
[10] |
YE W, ZHU J, LIAO X J, et al. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators[J]. Journal of Power Sources, 2015,299(60):417-424.
doi: 10.1016/j.jpowsour.2015.09.037 |
[11] |
WANG X F, ZHANG K, ZHU M F, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method[J]. Polymer, 2008,49(11):2755-2761.
doi: 10.1016/j.polymer.2008.04.015 |
[12] |
SHUAKAT M N, LIN T. Highly-twisted, continuous nanofibre yarns prepared by a hybrid needle-needleless electrospinning[J]. RSC Advances, 2015,5(43):33930-33937.
doi: 10.1039/C5RA03906A |
[13] |
WU J L, LIU S, HE L P, et al. Electrospun nanoyarn scaffold and its application in tissue engineering[J]. Materials Letters, 2012,89(24):146-149.
doi: 10.1016/j.matlet.2012.08.141 |
[14] |
ALI U, NIU H, ABBAS A, et al. Online stretching of directly electrospun nanofiber yarns[J]. RSC Advances, 2016,6(36):30564-30569.
doi: 10.1039/C6RA01856D |
[15] | HE J X, ZHOU Y M, QI K, et al. Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning[J]. Fibers & Polymers, 2013,14(11):1857-1863. |
[16] |
LEVITT A S, KNITTED C E, VALLETT R, et al. Investigation of nanoyarn preparation by modified electrospinning setup[J]. Journal of Applied Polymer Science, 2017,134(19):44813.
doi: 10.1002/app.44813 pmid: 28579635 |
[17] | 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006:26. |
YU Weidong. Textile Materials Science[M]. Beijing: China Textile & Apparel Press, 2006: 26. | |
[18] | CHEN Z M, XIN B J, WU X J, et al. Preparation and characterization of PSA/CNT composites and fibres[J]. Fibres & Textiles in Eastern Europe, 2012,94(5):21-25. |
[19] | XI T, XIN B J. Preparation and characterization of polyester staple yarns nanowrapped with polysulfone amide fibers[J]. Industrial & Engineering Chemistry Research, 2015,54(49):12303-12312. |
[20] | RUHLAND K, FRENZEL R, HORNY R, et al. Investigation of the chemical changes during thermal treatment of polyacrylonitrile and 15N-labelled polyacrylonitrile by means of in-situ FTIR and 15N NMR spectroscopy[J]. Polymer Degradation & Stability, 2017,146:298-316. |
[21] |
MA Y, ZHOU T, SU G, et al. Understanding the crystallization behavior of polyamide6/polyamide66 alloys from the perspective of hydrogen bonds: projection moving-window 2D correlation FTIR spectroscopy and the enthalpy[J]. RSC Advances, 2016,6(90):87405-87415.
doi: 10.1039/C6RA09611E |
[22] |
BARUAH K, HAZARIKA S, BORTHAKUR S, et al. Preparation and characterization of polysulfone-cyclodextrin composite nanofiltration membrane: solvent effect[J]. Journal of Applied Polymer Science, 2012,125(5):3888-3898.
doi: 10.1002/app.v125.5 |
[1] | 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[2] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[3] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[4] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
[5] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[6] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
[7] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[8] | 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182. |
[9] | 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7. |
[10] | 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19. |
[11] | 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29. |
[12] | 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/ 醋酸纤维素/ TiO2 复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14. |
[13] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[14] | 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180. |
[15] | 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32. |
|