纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 160-167.doi: 10.13475/j.fzxb.20180304708
尚珊珊1,2,3, 郁崇文1,2, 杨建平1,2(), 钱希茜1,2
SHANG Shanshan1,2,3, YU Chongwen1,2, YANG Jianping1,2(), QIAN Xixi1,2
摘要:
为明确高速气流成纱过程中气流产生和发展变化的规律,解决当前研究中存在的不足,对喷气涡流纺初始引纱过程和正常稳定纺纱过程的气流进行三维数值模拟及理论分析,并采用纺纱实验和借助扫描电子显微镜技术验证数值模拟结果。结果表明:纺纱初始时气流扰动小,湍流少,气流流线规则有序发展,喷嘴内负压气流产生强大吸力利于顺利引纱,模拟推测纤维的集束性较好,包缠和抱合效果较差;正常纺纱过程中气流场不稳定,湍流现象明显,气流轨迹复杂,并出现涡流和回流现象,回流为纱提供额外张力,利于提高纱线强力,模拟推测纤维的包缠和抱合效果较好,这也与纺纱实验结果相吻合。
中图分类号:
[1] | 景慎全, 章友鹤, 周建迪, 等. 喷气涡流纺产品的结构调整及其应用领域的拓展[J]. 纺织导报, 2017(11):68-72. |
JING Shenquan, ZHANG Youhe, ZHOU Jiandi, et al. Adjusting product structure and expanding applications of air jet vortex-spun yarn[J]. China Textile Leader, 2017(11):68-72. | |
[2] | 吴红玲, 蒋少军. 浅谈纺纱技术与发展[J]. 纺织器材, 2007(2):112-116. |
WU Hongling, JIANG Shaojun. Brief discussion on spinning technology and development[J]. Textile Accessories, 2007(2):112-116. | |
[3] | ORTLEK H G, NAIR F, KILIK R, et al. Effect of spindle diameter and spindle working period on the properties of 100% viscose MVS yarns[J]. Fibres & Textiles in Eastern Europe, 2008,16(3):17-20. |
[4] | 邢明杰. 喷气涡流纺成纱机理及其应用的研究[D]. 上海:东华大学, 2007: 30-65. |
XING Mingjie. Study on the mechanism of air-jet spinning nozzle and its applications[D]. Shanghai: Donghua University, 2007: 30-65. | |
[5] |
RWEI S P, PAI H I, WANG I C. Fluid simulation of the airflow in interlacing nozzles[J]. Textile Research Journal, 2001,71(7):630-634.
doi: 10.1177/004051750107100711 |
[6] |
ZENG Y C, YU C W. Numerical simulation of air flow in the nozzle of an air-jet spinning machine[J]. Textile Research Journal, 2003,73(4):350-356.
doi: 10.1177/004051750307300413 |
[7] | GUO H F, AN X L, YU Z S, et al. A numerical and experimental study on the effect of the cone angle of the spindle in Murata vortex spinning machine[J]. ASME Journal of Fluids Engineering, 2008,130(3):1039-1043. |
[8] | 韩晨晨, 程隆棣, 高卫东, 等. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018,39(2):32-37. |
HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Simulation of fiber trajectory in jet vortex spinning based on finite element model[J]. Journal of Textile Research, 2018,39(2):32-37. | |
[9] | 韩晨晨, 程隆棣, 高卫东, 等. 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018,39(1):25-31. |
HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Comparative analysis of conventional and self twist jet vortex spinning[J]. Journal of Textile Research, 2018,39(1):25-31. | |
[10] | 袁龙超, 李新荣, 郭臻, 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178. |
YUAN Longchao, LI Xinrong, GUO Zhen, et al. Research progress in influence of vortex spinning nozzle on flow field[J]. Journal of Textile Research, 2018,39(1):169-178. | |
[11] |
HOWALDT M, YOGANATHAN A P. Laser-Doppler anemometry to study fluid transport in fibrous asse-mblies[J]. Textile Research Journal, 1983,53(9):544-551.
doi: 10.1177/004051758305300906 |
[12] |
MOORE E M, SHAMBAUGH R L. Analysis of isothermal annular jets comparison of computational fluid dynamics and experimental data[J]. Journal of Applied Polymer Science, 2004,94(3):909-922.
doi: 10.1002/(ISSN)1097-4628 |
[13] | KRUTKA H M, SHAMBAUGH R L. Analysis of multiple jets in the Schwarz melt-blowing die using computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2005,44(23):8922-8932. |
[14] |
SUN Y, WANG X. Optimization of air flow field of the melt blowing slot die via numerical simulation and genetic algorithm[J]. Journal of Applied Polymer Science, 2010,115(3):1540-1545.
doi: 10.1002/app.v115:3 |
[15] |
SUN Y, WANG X. Optimal geometry design of the melt blowing slot die via the orthogonal array method and numerical simulation[J]. Journal of The Textile Institute, 2011,102(1):65-69.
doi: 10.1080/00405000903475805 |
[16] |
NYLAND G H, SKJETNE P, MIKKELSEN A, et al. Brownian dynamics simulation of needle chains[J]. J Chem Phys, 1996,105:1198-1207.
doi: 10.1063/1.471941 |
[17] |
LI M L, YU C W, SHANG S S. A numerical and experimental study on the effect of the orifice angle of vortex tube in vortex spinning machine[J]. The Journal of The Textile Institute, 2013,104(12):1303-1311.
doi: 10.1080/00405000.2013.799260 |
[18] | BASAL G, OXENHAM W. Vortex spun yarn vs. air-jet spun yarn[J]. AUTEX Research Journal, 2003,3(3):96-101. |
[1] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[2] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144. |
[3] | 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167. |
[4] | 陈旭, 吴炳洋, 范滢, 杨木生. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019, 40(07): 163-168. |
[5] | 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43. |
[6] | 曹海建, 陈红霞, 黄晓梅. 玻璃纤维/环氧树脂基夹芯材料侧压性能数值模拟[J]. 纺织学报, 2019, 40(05): 59-63. |
[7] | 何建, 裴泽光, 周健, 熊祥章, 吕海辰. 喷气涡流纺金属丝包芯纱成纱过程的在线观测与分析[J]. 纺织学报, 2019, 40(05): 136-143. |
[8] | 郭臻, 李新荣, 卜兆宁, 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟[J]. 纺织学报, 2019, 40(05): 131-135. |
[9] | 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139. |
[10] | 刘倩楠, 张涵, 刘新金, 苏旭中. 基于ABAQUS的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50. |
[11] | 林燕燕, 邹专勇, 陈玉香, 杨艳秋. 喷气涡流纺纱线热黏合增强工艺[J]. 纺织学报, 2019, 40(02): 58-62. |
[12] | 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68. |
[13] | 姚江薇 邹专勇 闫琳琳 卫国 唐佩君. 喷气涡流纺纱线拉伸断裂强力预测模型构建与验证[J]. 纺织学报, 2018, 39(10): 32-37. |
[14] | 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145. |
[15] | 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129. |
|