纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 71-75.doi: 10.13475/j.fzxb.20180303005

• 纺织工程 • 上一篇    下一篇

玻璃纤维/聚丙烯纤维增强热塑复合材料的制备及其性能

董卫国1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2018-03-04 修回日期:2018-11-06 出版日期:2019-03-15 发布日期:2019-03-15
  • 作者简介:董卫国(1961—),男,副教授,博士。主要研究方向为高性能纤维及其复合材料。E-mail: dongweiguo@tjpu.edu.cn
  • 基金资助:
    国家高技术研究发展计划(863 计划项目)(2012AA03A204)

Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites

DONG Weiguo1,2()   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-03-04 Revised:2018-11-06 Online:2019-03-15 Published:2019-03-15

摘要:

为获得高质量比和高取向度的长纤维增强热塑性复合材料,通过牵切工艺将玻璃纤维和聚丙烯纤维混合成为须条,将须条正交铺层后用热压方法制备玻璃纤维/聚丙烯长纤维热塑性复合材料,然后对复合材料的形貌、力学性能和动态力学性能进行测试和分析。结果表明:复合材料中玻璃纤维的平均长度为22.9 mm,质量分数为45.73%,纤维伸直度高,取向度高,分散性好;基体材料能够充分浸润玻璃纤维,复合材料具有较小的孔隙率,其值为1.58%,且该复合材料比挤出模压得到的复合材料具有更好的力学性能;复合材料的玻璃化转变温度为73.4 ℃,在温度为150 ℃时,能够保持较高的储能模量和较小的损耗因子,具有良好的热力学性能。

关键词: 热塑复合材料, 混纤预型件, 玻璃纤维, 聚丙烯纤维, 力学性能

Abstract:

In order to obtain long fiber reinforced thermoplastic composites with high weight ratios and high degrees of orientation, a stretch-breaking process was adopted to prepare glass fibers (GF) and polypropylene (PP) filaments into bi-component slivers. The slivers were aligned in two perpendicular layers, and the resulted hybrid-fiber was subjected to hot pressing to form GF/PP long fiber reinforced thermoplastic composites. The morphology of the composites was observed, and their static and dynamic mechanical properties were characterized by using the tensile test, bending test, impact test, and dynamic mechanical analysis (DMA). The test results show that glass fibers with an average length of 22.9 mm has high straightness, highly oriented and dispersed in the PP matrix, and accounts for 45.73% of the composites. Glass fibers are fully saturated in the matrix, which provides the composites with a porosity of 1.58%. In comparison of composites prepared by extrusion molding and stretch-breaking process, the latter obtain greater mechanical properties. DMA results show that the glass transition temperature of composites is 73.4 ℃, and the composites retain good thermomechanical properties at 150 ℃ and maintain high storage modulus and small loss factor.

Key words: thermoplastic composite, hybrid fiber preform, glass fiber, polypropylene fiber, mechanical property

中图分类号: 

  • TB322

图1

2种纤维牵切混合过程示意图"

图2

GF/PP热塑复合材料试样制备过程示意图"

图3

GF/PP复合材料形貌照片"

图4

GF/PP复合材料中纤维网照片"

图5

GF/PP复合材料中玻璃纤维长度分布图"

表1

GF/PP复合材料的力学性能"

试样制
备方法
拉伸
强度/
MPa
拉伸
模量/
MPa
弯曲
强度/
MPa
弯曲
模量/
MPa
冲击
强度/
(kJ·m-2)
牵切混纤法 128 8 300 180 9 780 35
挤出模压法 100 7 900 175 8 000 20

图6

GF/PP复合材料的DMA曲线"

[1] 方鲲, 吴丝竹, 张国荣, 等. 长纤维增强热塑性复合材料在汽车零部件上的应用进展[J]. 中国塑料, 2009,23(3):13-18.
FANG Kun, WU Sizhu, ZHANG Guorong, et al. Progress in applications of long fiber reinforced thermoplastics in automotive parts[J]. China Plastics, 2009,23(3):13-18.
[2] CHRISTOPH Schneeberger, JOANNA C H Wong, PAOLO Ermanni, Hybrid bicomponent fibres for thermoplastic composite preforms[J]. Composites Part A, 2017(103):69-73.
[3] SVENSSON Shishoo Gilchrist. Manufacturing of thermoplastic composites from commingled yarns: a review[J]. Journal of Thermoplastic Composite Materials, 1998,11(1):22-56.
doi: 10.1177/089270579801100102
[4] THOMANNY U I, ERMANNI P. The influence of yarn structure and processing conditions on the laminate quality of stampformed carbon and thermoplastic polymer fiber commingled yarns[J]. Journal of Thermoplastic Composite Materials, 2004,17(3):259-283.
doi: 10.1177/0892705704041988
[5] HOUPHOUËT-BOIGNY C, PLUMMER C J G, WAKEMAN M D, et al. Towards textile-based fiber-reinforced thermoplastic nanocomposites: melt spun polypropylene-montmorillonite nanocomposite fibers[J]. Polymer Engineering & Science, 2007,47(7):1122-1132.
[6] 董卫国. 混纤纱复合材料研究进展[J]. 天津工业大学学报, 2006,25(2):22-26.
DONG Weiguo. Review of thermoplastic composites made from commingled yarns[J]. Journal of Tianjin Polytechnic University, 2006,25(2):22-26.
[7] BAGHAEI B, SKRIFVARS M, BERGLIN L. Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern[J]. Composites Part A, 2015,76(36):154-161.
[8] 朱龙彪, 王昌国, 严晓照, 等. 纤维牵断成条机设计[J]. 纺织学报, 2007,28(12):107-109.
ZHU Longbiao, WANG Changguo, YAN Xiaozhao, et al. Design of fiber stretch-breaking sett frame[J]. Journal of Textile Research, 2007,28(12):107-109.
[9] 刘洋, 季晓雷, 郁崇文, 等. 亚麻牵切中纤维断裂过程和规律的研究[J]. 中国麻业, 2008,30(1):39-43.
LIU Yang, JI Xiaolei, YU Chongwen, et al. Study on the process and principle of stretch-breaking of flax fiber[J]. Plant Fiber Sciences in China, 2008,30(1):39-43.
[10] 陈东, 周秀玲. 锈钢纤维牵切工艺的研究[J]. 棉纺织技术, 2008,36(7):16-19.
CHEN Dong, ZHOU Xiuling. Study on draft cutting processing of stainless steel fibre[J]. Cotton Textile Technology, 2008,36(7):16-19.
[11] 吴绥菊, 郁崇文, 季晓雷. 牵切过程中纤维长度不匀率分析[J]. 纺织学报, 2012,33(3):34-37.
WU Suiju, YU Chongwen, JI Xiaolei. Control of fiber length irregularity in stretch-breaking process[J]. Journal of Textile Research, 2012,33(3):34-37.
[12] BALAJI K T, PILLAY S, NING H, et al. Process simulation, design and manufacturing of a long fiber thermoplastic composite for mass transit application[J]. Composites Part A, 2008(39):1512-1521.
[13] BIJSTERBOSCH H, GAYMANS R J. Polyamide 6-long glass fiber injection moldings[J]. Polymer Composites, 1995,16(5):363-369.
doi: 10.1002/(ISSN)1548-0569
[14] 董卫国, 黄故. 三维机织热塑复合材料的制作与性能[J]. 纺织学报, 2005,26(6):107-108.
DONG Weiguo, HUANG Gu. Manufacture and performance of 3D-woven thermoplastic composite material[J]. Journal of Textile Research, 2005,26(6):107-108.
[15] THOMASON J L, VLUG M A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: tensile and flexural modulus[J]. Composites Part A, 1996,27(6):477-84.
[16] AKONDA M H, LAWRENCE C A, WEAGER B M. Recycled carbon fibre-reinforced polypropylene thermoplastic composites[J]. Composites Part A, 2012,43:79-86.
[17] 梁基照. 无机粒子填充聚合物复合材料的储能模量及其表征[J]. 华南理工大学学报 (自然科学版), 2008,36(11):143-146.
LIANG Jizhao. Storage modulus and its characterization of inorganic particulate filled polymer composites[J]. Journal of South China University of Technology(Natural Science Edition), 2008,36(11):143-146.
[18] 薛东, 刘芹, 雷文, 等. 动态力学分析方法在塑木复合材料研究中的应用[J]. 高分子通报, 2013,49(7):73-76.
XUE Dong, LIU Qin, LEI Wen, et al. The application of dynamical mechanical analysis technology in the researches of wood plastic composites[J]. Polymer Bulletin, 2013,49(7):73-76.
[1] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[5] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[6] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[7] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[8] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[9] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[10] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[11] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[12] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[13] 刘淑萍, 李亮, 刘让同, 崔世忠, 王艳婷. 羧甲基纤维素钠改性角蛋白膜的结构与性能[J]. 纺织学报, 2019, 40(06): 14-19.
[14] 刘金鑫, 张海峰, 张星, 黄晨, 郑晓冰, 靳向煜. 多级拉伸与热定型对聚乙烯/聚丙烯双组分纤维结构和性能的影响[J]. 纺织学报, 2019, 40(05): 24-29.
[15] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!