纺织学报 ›› 2019, Vol. 40 ›› Issue (03): 8-12.doi: 10.13475/j.fzxb.20180405305
LI Xiaochuan1, QU Qianqian1, LI Xuming1,2()
摘要:
为提高聚乳酸(PLA)纤维的力学性能,采用聚丙烯(PP)与聚乳酸(PLA)通过熔融纺丝制备PLA/PP纤维,并借助差示扫描热量仪、热重分析仪、万能材料测试仪、纤维双折射仪对其热学性能、热稳定性、拉伸性能和纤维取向度进行表征。结果表明:PP的引入对PLA的玻璃化转变温度和熔融温度没有显著影响,但促进了PLA的结晶,结晶度提高了585.9%;随着PP质量分数的增加,PLA的热稳定性降低(特别是在初始分解阶段),但其残炭率提高,同时PLA/PP共混纤维的取向度提高,力学性能得到改善;当PP质量分数为20%时,PLA/PP共混纤维的取向度、断裂强度和断裂伸长率分别提高了55.6%,98.2%和44.4%。
中图分类号:
[1] | LI Longzhen, HUANG Wei, WANG Bingjie, et al. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxy-valerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015,68:183-194. |
[2] | WANG Ya'nan, WENG Yunxuan, WANG Lei. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites[J]. Polymer Testing, 2014,36:119-125. |
[3] | 朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016,37(2):21-27. |
ZHU Feichao, HAN Jian, YU Bin, et al. Study on spinnability of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyl vaIerate)/poly (lactic acid) blends for melt-blown nonwovens[J]. Journal of Textile Research, 2016,37(2):21-27. | |
[4] | 刘淑强, 张蕊萍, 贾虎生, 等. 可生物降解聚乳酸长丝的熔融纺丝工艺[J]. 纺织学报, 2012,33(11):11-15. |
LIU Shuqiang, ZHANG Ruiping, JIA Husheng, et al. Melt spinning process of biodegradable PLA filament[J]. Journal of Textile Research, 2012,33(11):11-15. | |
[5] | IDRIS Zembouai, MUSTAPHA Kaci, AIDA Benhamida, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior[J]. Journal of Polymers and the Environment, 2014,22:131-139. |
[6] | LIANG Guolei, LI Zhihong, WU Jimin. Reparation and properties of poly (lactic acid) fiber reinforced PHBV composite[J]. Applied Mechanics and Materials, 2013,420:107-113. |
[7] | BOUZIDIA Farida, GUESSOUM Melia, MAGALI Fois. Viscoelastic, thermo-mechanical and environmental properties of composites based on polypropylene/poly(lactic acid) blend and copper modified nano-clay[J]. Journal of Adhesion Science and Technology, 2018,32:496-515. |
[8] | WANG Ming, WU Ying, LI Yidong, et al. Progress in toughening poly(lactic acid) with renewable polymers[J]. Polymer Reviews, 2017,57:557-593. |
[9] | ABDELWAHAB M A, FLYNN A, CHIOU B S, et al. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends[J]. Polym Degrad Stab, 2012,97:1822-1828. |
[10] | 李旭明, 孙西超, 师利芬. 增强增韧聚乳酸纤维的制备及其性能[J]. 纺织学报, 2017,38(4):12-16. |
LI Xuming, SUN Xichao, SHI Lifen. Preparation and properties research of reinforcing and toughening PLA fiber[J]. Journal of Textile Research, 2017,38(4):12-16. | |
[11] | DIELLALI S, SADOUN T, HADDAOUI N, et al. Viscosity and viscoelasticity measurements of low density polyethylene/poly(lactic acid) blends[J]. Polym Bull, 2015,72:1177-1195. |
[12] | SINGH G, KAUR N, BHUNIA H, et al. Degradation behaviors of linear low-density polyethylene and poly(L-lactic acid) blends[J]. J Appl Polym Sci, 2012,124:1993-1998. |
[13] | HASHIMA K, NISHITSUJI S, INOUE T. Structure-properties of super-tough PLA alloy with excellent heat resistance[J]. Polymer, 2010,51:3934-3939. |
[14] |
ROHLMANN C O, FAILLA M D, QUINZANI L M. Linear viscoelasticity and structure of polypropylene-montmorillonite nanocomposites[J]. Polymer, 2006,47:7795-7804.
doi: 10.1016/j.polymer.2006.08.044 |
[15] | KOUTSOMITOPOULOU A F, BERGERET A. Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites[J]. Powder Technology, 2014,255:10-16. |
[16] | 黄锦, 吴文倩, 项爱民. 聚乳酸与高分子弹性体共混体系的研究[J]. 中国塑料, 2010,24(11):54-57. |
HUANG Jin, WU Wenqian, XIANG Aimin. Study on blends of PLA/elastomers[J]. China Plastics, 2010,24(11):54-57. | |
[17] | SHIH Yengfong, HUANG Chienchung. Polylactic acid(PLA)/banana fiber (BF) biodegradable green composites[J]. J Polym Res, 2011,18:2335-2340. |
[18] | 于翔, 王延伟, 杨秀琴, 等. PHBV增韧PLA的结晶及力学性能研究[J]. 塑料科技, 2015,43:73-76. |
YU Xiang, WANG Yanwei, YANG Xiuqin, et al. Study on crystallization and mechanical properties of PHBV toughened PLA[J]. Plastics Science and Technology, 2015,43:73-76. | |
[19] | 徐文华, 杨智韬, 殷小春. 拉伸形变作用下PLA/PBS增韧共混物力学性能研究[J]. 中国塑料, 2016,30:34-38. |
XU Wenhua, YANG Zhitao, YIN Xiaochun, et al. Study on mechanical properties of PLA/PBS toughening blends under tensile deformation[J]. China Plastics, 2016,30:34-38. |
[1] | 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166. |
[2] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[3] | 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7. |
[4] | 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14. |
[5] | 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31. |
[6] | 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62. |
[7] | 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14. |
[8] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[9] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[10] | 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173. |
[11] | 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29. |
[12] | 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/ 壳聚糖/ Fe3 O4 超细纤维膜对酸性蓝MTR 的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24. |
[13] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[14] | 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20. |
[15] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
|