纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 117-121.doi: 10.13475/j.fzxb.20180603205
吴欢1, 丁笑君1,2, 李秦曼1, 杜磊1,2, 邹奉元1,2()
WU Huan1, DING Xiaojun1,2, LI Qinman1, DU Lei1,2, ZOU Fengyuan1,2()
摘要:
针对服装廓形分类特征提取计算复杂、分类效果尚不理想等问题,提出了一种基于卷积神经网络CaffeNet模型的服装廓形分类方法。以女裤为例,首先建立一个包括吊裆裤、阔腿裤、喇叭裤、小脚裤和直筒裤的5种女裤廓形样本库,利用卷积神经网络相互交替的卷积层和池化层从女裤图像中自动提取形状特征,通过反向传播算法不断逐层更新权值,采用梯度下降法并且改进全连接层的参数最小化损失函数,运用Softmax回归分类器来实现女裤的廓形分类。实验结果表明,该方法能够有效地对女裤廓形进行分类,分类准确率达到95%以上,可为服装商品的可视化分类识别提供有效途径。
中图分类号:
[1] | BOSSARD L, DANTONE M, LEISTNER C, et al. Apparel classification with style[C]// Asian Conference on Computer Vision. Korea: Springer-Verlag Vision, 2012: 321-335. |
[2] | DI W, WAH C, BHARDWAJ A, et al. Style finder: fine-grained clothing style recognition and retri-eval[C]// IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE Computer Society Foundation, 2013: 8-10. |
[3] | ZHANG W, ANTUNEZ E, GOKTURK S, et al. Apparel silhouette attributes recognition [C]//IEEE Workshop on the Applications of Computer Vision. Breckenridge: IEEE Computer Society, 2012: 489-496. |
[4] | AN L X, LI W. An integrated approach to fashion flat sketches classification[J]. International Journal of Clothing Science and Technology, 2014,26(5):346-366. |
[5] | 李东, 万贤福, 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017,38(5):122-127. |
LI Dong, WAN Xianfu, WANG Jun. Clothing style recognition approach using fourier descriptors and support vector machines[J]. Journal of Textile Research, 2017,38(5):122-127. | |
[6] | YAMAGUCHI K, KIAPOUR H, ORTIZ L, et al. Parsing clothing in fashion photographs[C]// IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE Computer Science, 2012: 3570-3577. |
[7] | ZAGORUYKO S, KOMODAKIS N. Learning to compare image patches via convolutional neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE Computer Society, 2015: 4353-4361. |
[8] | JIA Y, SHELHAMER E, DONAHUE J. Caffe: convolutional architecture for fast feature embedding[C]// 22nd ACM International Conference on Multimedia. Orlando: Computer Science, 2014: 675-678. |
[9] | KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE Computer Society, 2014: 1725-1732. |
[10] | SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]// International Joint Conference on Neural Networks. California: International Neural Network Society, 2011: 2809-2813. |
[11] | CUI X, LIU Y, WANG C, et al. Defect classification for tire X-ray images using convolutional neural network[J]. Electronic Measurement Technology, 2017,40(5):168-173. |
[12] | CHANG C C. LIN C J, LIBSVM: A library for support vector machines [CP/OL]. 2010-03-11 [2015-11-09]. http://www.csie.ntu.edu.tw/~cjlin/libsvm. |
[1] | 邵金鑫, 张宝昌, 曹继鹏. 基于图像处理与深度学习方法的棉纤维梳理过程纤维检测识别技术[J]. 纺织学报, 2020, 41(07): 40-46. |
[2] | 王泽霞, 陈革, 陈振中. 基于改进卷积神经网络的化纤丝饼表面缺陷识别[J]. 纺织学报, 2020, 41(04): 39-44. |
[3] | 王晓华, 姚炜铭, 王文杰, 张蕾, 李鹏飞. 基于改进YOLO 深度卷积神经网络的缝纫手势检测[J]. 纺织学报, 2020, 41(04): 142-149. |
[4] | 贾小军, 叶利华, 邓洪涛, 刘子豪, 陆锋杰. 基于卷积神经网络的蓝印花布纹样基元分类 [J]. 纺织学报, 2020, 41(01): 110-117. |
[5] | 孙洁, 丁笑君, 杜磊, 李秦曼, 邹奉元. 基于卷积神经网络的织物图像特征提取与检索研究进展[J]. 纺织学报, 2019, 40(12): 146-151. |
[6] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
[7] | 汪珊娜 张华熊 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(08): 117-123. |
[8] | 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141. |
[9] | 景军锋 范晓婷 李鹏飞 洪良. 应用深度卷积神经网络的色织物缺陷检测[J]. 纺织学报, 2017, 38(02): 68-74. |
|