纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 158-164.doi: 10.13475/j.fzxb.20180504707
LIU Zhengdong1(), LIU Yihan2, WANG Shouren3
摘要:
为准确而快速地对电商平台产品图像进行西装目标的分类检测,以3个主要的卷积网络深度学习框架即快速区域卷积神经网络、基于区域的全连接卷积网络和单次多盒检测为基础,首先通过实验分析其在服装图像分类识别中的效率和有效性,针对小目标识别困难和过拟合识别问题,提出基于尺寸分割和负样本的单次多盒检测(SSD)增强方法(DN-SSD);然后将图像分割为不同尺寸的子图突出服装目标,通过融合分类方法解决SSD算法对小目标识别不足的问题,并通过增强负样本以提高算法的场景适应能力。实验结果表明,该算法可有效地识别各种形态和大小的西装目标,识别准确率达到90%以上,并且能够方便地推广到服装其他品类的识别中。
中图分类号:
[1] | 纪娟, 秦珂, 杨若瑜. 基于HOG和几何特征的服装细节要素识别与分类[J]. 图学学报, 2016,37(1):84-90. |
JI Juan, QIN Ke, YANG Ruoyu. Classification of the detail features for clothes based on HOG and geometric features[J]. Journal of Graphics, 2016,37(1):84-90. | |
[2] | 魏芬, 刘建平, 徐松松, 等. 基于多特征值的服装检测与识别算法[J]. 实验室研究与探索, 2016,35(5):118-122. |
WEI Fen, LIU Jianping, XU Songsong, et al. Research on clothing detection and recognition algorithm based on characteristic values[J]. Research and Exploration in Laboratory, 2016,35(5):118-122. | |
[3] | 李东, 万贤福, 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017,38(5):122-127. |
LI Dong, WAN Xianfu, WANG Jun. Clothing style recognition approach using Fourier descriptors and support vector machines[J]. Journal of Textile Research, 2017,38(5):122-127. | |
[4] | 李东, 万贤福, 汪军, 等. 基于轮廓曲率特征点的服装款式识别方法[J]. 东华大学学报(自然科学版), 2018(1):1-6. |
LI Dong, WAN Xianfu, WANG Jun, et al. Clothing style recognition approach based on the curvature feature points on the contour[J]. Journal of Donghua Univer-sity (Natural Science Edition)>, 2018(1):1-6. | |
[5] | 彭刚, 杨诗琪, 黄心汉, 等. 改进的基于区域卷积神经网络的微操作系统目标检测方法[J]. 模式识别与人工智能, 2018,31(2):142-149. |
PENG Gang, YANG Shiqi, HUANG Xinhan, et al. Improved object detection method of micro-operating system based on region convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2018,31(2):142-149. | |
[6] | KRIZHENVSHKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional net-works[C]// Proceedings of the Conference Neural Information Processing Systems (NIPS).[S.l.]: Curran Associates Int, 2012: 1097-1105. |
[7] |
PANG Y, SUN M, JIANG X, et al. Convolution in convolution for network in network[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018,29(5):1587-1597.
doi: 10.1109/TNNLS.2017.2676130 pmid: 28328517 |
[8] |
NODA K, YAMAGUCHI Y, NAKADAI K, et al. Audio-visual speech recognition using deep learning[J]. Applied Intelligence, 2015,42(4):722-737.
doi: 10.1007/s10489-014-0629-7 |
[9] | ZHANG K, SUN M, HAN T X, et al. Residual networks of residual networks: multilevel residual networks[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2016(99):1. |
[10] | 范荣. 基于卷积神经网络的服装种类识别[J]. 现代计算机, 2016(9):29-32. |
FAN Rong. Classification of clothing type based on convolutional neural network[J]. Modern Computer, 2016 (9):29-32. | |
[11] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Mach Intell, 2016,39(6):1137-1149. |
[12] | HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980-2988. |
[13] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Proceedings of European Conference on Computer Vision. Amsterdam: ECCV, 2016: 21-37. |
[14] | 唐聪, 凌永顺, 郑科栋, 等. 基于深度学习的多视窗SSD目标检测方法[J]. 红外与激光工程, 2018,47(1):290-298. |
TANG Cong, LING Yongshun, ZHENG Kedong, et al. Object detection method of multi-view SSD based on deep learning[J]. Infrared and Laser Engineering, 2018,47(1):290-298. |
[1] | 王晓华, 姚炜铭, 王文杰, 张蕾, 李鹏飞. 基于改进YOLO 深度卷积神经网络的缝纫手势检测[J]. 纺织学报, 2020, 41(04): 142-149. |
[2] | 许倩, 陈敏之. 基于深度学习的服装丝缕平衡性评价系统[J]. 纺织学报, 2019, 40(10): 191-195. |
[3] | 汪珊娜 张华熊 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(08): 117-123. |
[4] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
[5] | 景军锋 范晓婷 李鹏飞 洪良. 应用深度卷积神经网络的色织物缺陷检测[J]. 纺织学报, 2017, 38(02): 68-74. |
[6] | 徐增波 周胜. 基于尺度-空间极值的织物起球目标检测[J]. 纺织学报, 2013, 34(7): 45-51. |
|