纺织学报 ›› 2019, Vol. 40 ›› Issue (04): 83-89.doi: 10.13475/j.fzxb.20171103207

• 染整与化学品 • 上一篇    下一篇

茜草植物染料染色莫代尔纤维的超声波处理

李洋1,2, 张元明2, 姜伟1,2, 张建明3, 王思社3, 苏建军3, 韩光亭1,2,3()   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.省部共建生物多糖纤维成形与生态纺织国家重点实验室(青岛大学), 山东 青岛 266071
    3.山东省恒丰植物染工业化生产技术研究院, 山东 德州 253000
  • 收稿日期:2017-11-16 修回日期:2018-12-17 出版日期:2019-04-15 发布日期:2019-04-16
  • 通讯作者: 韩光亭
  • 作者简介:李洋(1992—),男,硕士生。主要研究方向为功能纺织品开发与设计。
  • 基金资助:
    山东省重点研发计划项目(2016ZDJS08A04)

Ultrasonic treatment of Modal fiber dyed with madder

LI Yang1,2, ZHANG Yuanming2, JIANG Wei1,2, ZHANG Jianming3, WANG Sishe3, SU Jianjun3, HAN Guangting1,2,3()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University), Qingdao, Shandong 266071, China
    3. Shandong Hengfeng Plant Dyeing Industrialization Production Technology Research Institute, Dezhou, Shandong 253000, China
  • Received:2017-11-16 Revised:2018-12-17 Online:2019-04-15 Published:2019-04-16
  • Contact: HAN Guangting

摘要:

为改善茜草植物染料染色莫代尔纤维的可纺性,采用超声波处理方法去除染色后纤维表面附着颗粒物,通过试验探讨超声波功率密度、温度、时间对颗粒物去除的影响。在此基础上选取试验因素和水平,用Box-Behnken试验设计方法,研究各变量及其交互作用对茜草植物染料染色纤维表面颗粒附着物去除的影响。结果表明:超声波处理温度对纤维表面颗粒物的去除影响最大,功率密度影响最小;利用Design Expert软件得到回归方程的预测模型对工业化处理有预测作用;超声波去除纤维表面颗粒物的最佳条件为超声波功率密度 0.67 W/cm2,超声波处理温度43 ℃,超声波处理时间22 min。

关键词: 植物染料, 莫代尔纤维, 超声波处理, Box-Behnken试验, 茜草, 染色

Abstract:

In order to improve the spinnability of the Modal fiber dyed with madder, ultrasonic treatment was employed to remove the attached particulate matters on the surface of the dyed fibers. The influence of ultrasonic power density, temperature and time on the removal of particulate matters was discussed by single factor test. The experimental factors and levels were selected on the basis of the single factor experiment. The effects of the variates and their interactions on the removal of attached particulate matters on the dyed fiber surface were then studied by the Box-Behnken experiment. The results show that ultrasonic temperature has the greatest effect on the removal of particulate matters on the surface of the fiber, and the influence of power density is the least. The prediction model of regression equation obtained by using Design Expert software has a predictive effect on industrialization. The optimum conditions for the ultrasonic particle removal are as follows: ultrasonic power density of 0.67 W/cm2, ultrasonic temperature of 43 ℃ and ultrasonic time of 22 min.

Key words: plant dyeing, Modal fiber, ultrasonic treatment, Box-Behnken test, madder, dyeing

中图分类号: 

  • TS102.2

图1

固体颗粒物吸收光谱曲线"

图2

固体颗粒物标准曲线"

图3

染色前后莫代尔纤维的扫描电镜照片"

图4

固定颗粒物吸光度静置时间变化曲线"

图5

超声波功率密度对莫代尔纤维表面颗粒物去除的影响"

图6

超声波处理温度对莫代尔纤维表面颗粒物去除的影响"

图7

超声波处理时间对莫代尔纤维表面颗粒物去除的影响"

表1

响应面因素水平设计"

水平 因素
功率密度/
(W·cm-2)
超声波处理
时间/min
超声波处理
温度/℃
-1 0.30 15.0 30
0 0.65 22.5 45
1 1.00 30.0 60

表2

Box-Behnken编码表与响应值"

序号 编码值 颗粒物质量浓度/(g·L-1)
A B C
1 -1 -1 0 0.114 953
2 1 -1 0 0.152 400
3 -1 1 0 0.124 315
4 1 1 0 0.138 491
5 -1 0 -1 0.132 072
6 1 0 -1 0.169 652
7 -1 0 1 0.179 816
8 1 0 1 0.102 248
9 0 -1 -1 0.163 099
10 0 1 -1 0.112 047
11 0 -1 1 0.113 348
12 0 1 1 0.128 595
13 0 0 0 0.236 254
14 0 0 0 0.222 746
15 0 0 0 0.237 725
16 0 0 0 0.249 761
17 0 0 0 0.225 02

表3

回归方程方差分析"

方差来源 平方和/10-4 自由度 均方/10-3 F p 显著性
模型 400.00 9 4.434 18.600 0.000 4 ***
x1 0.17 1 0.017 0.071 0.797 6
x2 2.04 1 0.204 0.850 0.386 2
x3 3.49 1 0.349 1.470 0.265 3
x1x2 1.35 1 0.135 0.570 0.475 6
x1x3 33.15 1 3.315 13.910 0.007 4 ***
x2x3 10.99 1 1.099 4.160 0.068 9
x12 76.21 1 7.621 31.980 0.000 8 ***
x22 150.00 1 15.000 61.950 0.000 1 ***
x32 88.36 1 8.836 37.080 0.000 5 ***
残差 16.68 7 0.238
失拟相 11.94 3 0.398 3.360 0.136 3
净误差 4.74 4 0.119
总离差 420.00 16

图8

超声波功率密度与时间交互作用的响应面"

图9

超声波功率密度与温度交互作用的响应面"

图10

超声波处理温度与时间交互作用的响应面"

图11

超声波处理前后纤维的扫描电镜照片(×1 000)"

图12

超声波处理前后纤维强度对比"

[1] 张惠芳, 惠晶, 徐红. 两种天然植物染料染色料的应用现状及发展前景[J]. 纺织科技进展, 2013(3):5-7.
ZHANG Huifang, HUI Jing, XU Hong. Application status and development prospects of two kinds of natural vegetable dyes[J]. Progress in Textile Science & Technology>, 2013(3):5-7.
[2] 榕嘉. 茜草的性能和染色试验[J]. 丝绸, 2002(2):28-29.
RONG Jia. The properties and dyeing experiments of madder[J]. Journal of Silk>, 2002(2):28-29.
[3] 万震, 周红丽. 莫代尔散纤维染色技术[J]. 染整技术, 2007,29(4):21-23.
WAN Zhen, ZHOU Hongli. Dyeing of modal loose stock fibres[J]. Textile Dyeing and Finishing Journal, 2007,29(4):21-23.
[4] 刘祥霞, 杜文琴, 吴翠. 植物染料分子状态与其上染关系[J]. 纺织学报, 2013,34(9):84-88.
LIU Xiangxia, DU Wenqin, WU Cui. Vegetable dyes:molecular status vs dyeing ability[J]. Journal of Textile Research, 2013,34(9):84-88.
[5] 肖敏, 杨峰, 王旭荣, 等. 分光光度法测定金黄色葡萄球菌菌液浓度方法的建立[J]. 动物医学进展, 2014(11):40-43.
XIAO Min, YANG Feng, WANG Xurong, et al. Establishment of concentration determination of Staphylococcus aureus by spectrophotometry[J]. Progress in Veterinary Medicine, 2014(11):40-43.
[6] 毕延根, 杨少峰. 用紫外-可见分光光度计测定油样中沥青质含量[J]. 分析测试学报, 2000,19(1):41-44.
BI Yangen, YANG Shaofeng. Determination of asphaltene in petroleum by UV/VIS spectrophotometry[J]. Journal of Instrumental Analysis, 2000,19(1):41-44.
[7] SHEIKH J, JAGTAP P S, TELI M D. Ultrasound assisted extraction of natural dyes and natural mordants vis a vis dyeing[J]. Fibers & Polymers, 2016,17(5):738-743.
[8] VEDAR A N, SANDHYA K V, CHARUKESH N R B, et al. Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates[J]. Chemical Engineering & Processing Process Intensification, 2017,114:46-54.
[9] KUSUMA H S, SUDRAJAT R G M, SUSANTO D F, et al. Response surface methodology (RSM) modeling of microwave-assisted extraction of natural dye from Swietenia mahagony: a comparation between Box-Behnken and central composite design method[J]. AIP Conference Proceedings, 2015,1699(1):212-216.
[10] 陆洋, 彭飞, 黄丽霞, 等. 响应面法优化超声辅助提取贯众多酚工艺[J]. 天然产物研究与开发, 2015(1):103-108.
LU Yang, PENG Fei, HUANG Lixia, et al. Optimization of ultrasonic-assisted extraction conditions of polyphenol from cyrtomium fortunei by response surface methodo-logy[J]. Nat Prod Res Develop>, 2015(1):103-108.
[11] 崔方玲, 纪威. 超声空化气泡动力学仿真及其影响因素分析[J]. 农业工程学报, 2013,29(17):24-29.
CUI Fangling, JI Wei. Dynamic simulation of ultrasonic cavitation bubble and analysis of its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(17):24-29.
[12] 高永慧, 耿小丕. 超声波清洗液温度变化规律的研究[J]. 承德石油高等专科学校学报, 2005,7(3):39-41.
GAO Yonghui, GENG Xiaopei. Temperature change of ultrasonic wave cleaning fluid[J]. Journal of Chengde Petroleum College, 2005,7(3):39-41.
[13] 尤丽霞, 张羡, 李丹, 等. 超声波处理对棉织物污渍去除的影响[J]. 纺织学报, 2011,32(4):91-94.
YOU Lixia, ZHANG Xian, LI Dan, et al. Effect of ultrasonic treatment on stain removal of cotton fabric[J]. Journal of Textile Research, 2011,32(4):91-94.
[14] 王丽丽, 高忠涛, 杜冰, 等. 基于响应面法优化生物酶洗毛工艺[J]. 毛纺科技, 2010,38(7):9-14.
WANG Lili, GAO Zhongtao, DU Bing, et al. Enzymatic wool scouring optimization by response surface methodo-logy[J]. Wool Textile Joumal, 2010,38(7):9-14.
[15] 刘齐, 杜萍, 王飞生, 等. 超声波法提取板栗壳多糖的工艺条件优化[J]. 食品工业科技, 2014,35(3):221-224.
LIU Qi, DU Ping, WANG Feisheng, et al. Study on ultrasonic extraction of polysaccharides in chestnut shell by response surface methodology[J]. Science and Technology of Food Industry, 2014,35(3):221-224.
[16] 赵玉萍, 张娟, 郭雅琳, 等. 基于响应面分析法的超声波洗涤羽毛纤维工艺条件优化[J]. 纺织学报, 2012,33(7):24-30.
ZHAO Yuping, ZHANG Juan, GUO Yalin, et al. Process optimization of ultrasonic washing of feather fibers based on response surface method[J]. Journal of Textile Research, 2012,33(7):24-30.
[17] 胡敏, 刘凡清, 张玉先. 纤维滤料的超声波清洗技术研究[J]. 给水排水, 2008,34(11):34-37.
HU Min, LIU Fanqing, ZHANG Yuxian. Research of ultrasonic cleaning technology for fiber filter media[J]. Water & Wastewater Engineering, 2008,34(11):34-37.
[18] MOHANA S, SHRIVASTAVA S, DIVECHA J, et al. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium[J]. Bioresource Technology, 2008,99(3):562-569.
pmid: 17804220
[1] 李瑞卿, 王伟, 魏炳举, 周长文, 张淑桃. 应用环保型还原剂的硫化黑染色工艺[J]. 纺织学报, 2020, 41(08): 50-54.
[2] 占镠祥, 李婉, 王高军, 赵先丽, 王妮, 李毓陵. 微波处理在蛋白质纤维加工中的应用研究进展[J]. 纺织学报, 2020, 41(08): 128-134.
[3] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[4] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[5] 宋慧君, 翟亚丽, 钞意元, 朱超宇. 蚕丝织物的栀子蓝色素染色[J]. 纺织学报, 2020, 41(06): 81-85.
[6] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[7] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[8] 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺 [J]. 纺织学报, 2020, 41(01): 80-87.
[9] 汪康康, 李晓燕, 姚继明. 铁盐媒介对靛蓝电化学还原体系的影响 [J]. 纺织学报, 2020, 41(01): 75-79.
[10] 刘越, 莫林祥, 陈丰. 拼混型黑色分散染料的配伍性及其染色性能[J]. 纺织学报, 2019, 40(12): 63-67.
[11] 江华, 张志恒, 蔡金芳, 陈维国, 崔志华, 孙岩峰. 芳伯胺染料对蚕丝织物的重氮化-偶合染色及工艺调控[J]. 纺织学报, 2019, 40(11): 100-105.
[12] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[13] 韩虎, 李伟婷, 魏会芳, 王小艳, 孙昌, 许长海. 酸性染料易染氨纶的染色动力学[J]. 纺织学报, 2019, 40(08): 76-79.
[14] 尹思力, 杨洋, 江文, 石业新, 周小华, 黄金洪. 接枝蚕蛹肽羧基化粘胶纤维的制备及其优化工艺[J]. 纺织学报, 2019, 40(08): 14-19.
[15] 陶开鑫, 俞成丙, 侯颀骜, 吴聪杰, 刘引烽. 基于最小二乘支持向量机的棉针织物活性染料湿蒸染色预测模型[J]. 纺织学报, 2019, 40(07): 169-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!