纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 152-157.doi: 10.13475/j.fzxb.20180802906

• 综合述评 • 上一篇    下一篇

碳纤维增强树脂基复合材料的回收及其再利用研究进展

阮芳涛1(), 施建2, 徐珍珍1, 邢剑1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.日本秋田县立大学系统科学技术学院, 日本 秋田 015005
  • 收稿日期:2018-08-10 修回日期:2019-03-06 出版日期:2019-06-15 发布日期:2019-06-25
  • 作者简介:阮芳涛(1987—),男,讲师,博士。主要研究方向为纤维表面处理及与其树脂界面性能的分析评价、纤维增强复合材料的结构设计和制备。E-mail: ruanfangtao@ahpu.edu.cn
  • 基金资助:
    安徽省重点研究与开发计划项目(1804b06020360);芜湖市科技计划项目(2018yf47)

Research progress in recycling and reuse of carbon fiber reinforced resin composites

RUAN Fangtao1(), SHI Jian2, XU Zhenzhen1, XING Jian1   

  1. 1. College of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015005, Japan
  • Received:2018-08-10 Revised:2019-03-06 Online:2019-06-15 Published:2019-06-25

摘要:

为有效回收碳纤维树脂基复合材料,避免资源浪费和环境污染,综述了热固性和热塑性树脂基碳纤维复合材料的不同回收方法及其进展,包括物理机械法、热回收法、溶剂解离法、熔融注塑和切片再塑法等,梳理了溶剂解离法的回收思路,介绍了针对碳纤维复合材料回收的可降解热固性树脂及回收方法,阐述了碳纤维增强热塑性树脂的回收机制。总结了目前碳纤维增强热固性树脂回收方法的回收效率低,设备要求高,再生碳纤维性能下降等特点,认为碳纤维增强热塑性树脂具备快速成型、成本低、能够多次回收利用的特点,适于碳纤维复合材料在民用领域大量应用的发展趋势。

关键词: 碳纤维, 热固性树脂, 热塑性树脂, 回收方法, 资源再利用

Abstract:

In order to recover carbon fiber reinforced resin composites(CFRP) effectively, avoid waste of resources and environmental pollution, recycling methods and progress of thermosetting and thermoplastic resin-based carbon fiber composites were reviewed in this paper. These methods include physical mechanical method, heat recovery, solvent dissociation, melt injection and slice remolding, etc. The recovery idea of solvent dissociation method was sorted out. The degradable thermosetting resin and its recovery method were introduced. The recycling mechanism of carbon fiber reinforced thermoplastic resin was described.The recycling methods of carbon fiber reinforced thermosetting resins were summarized, which have the characteristics of low recycling efficiency, high equipment requirements and poor performance of regenerated carbon fibers. It is considered that carbon fiber reinforced thermoplastic resin composite has the characteristics of rapid prototyping, low cost and multiple recycling, which is suitable for the development trend of large-scale application of CFRP in civil field.

Key words: carbon fiber, thermosetting resin, thermoplastic resin, recycling method, reutilization

中图分类号: 

  • TB332
[1] WITIK R A, TEUSCHER R, MICHAUD V, et al. Carbon fibre reinforced composite waste: an environmental assessment of recycling, energyrecovery and landfilling[J]. Composites: Part A, 2013,49(1):89-99.
doi: 10.1016/j.compositesa.2013.02.009
[2] PIMENTA S, PINHO S T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook[J]. Waste Management, 2011,31(2):378-392.
doi: 10.1016/j.wasman.2010.09.019 pmid: 20980138
[3] MENG F, MCKECHNIE J, TURNER T, et al. Environmental aspects of use of recycled carbon fibre composites in automotive applications[J]. Environmental Science and Technology, 2017,51:12727-12736.
doi: 10.1021/acs.est.7b04069 pmid: 29017318
[4] PICKERING S J. Recycling technologies for thermoset composite materials: current status[J]. Composites Part A: Applied Science & Manufacturing, 2006,37(8):1206-1215.
[5] BESSA J, MATOS J, MOTA C, et al. Influence of surface treatments on the mechanical properties of fibre reinforced thermoplastic composites[J]. Procedia Engineering, 2017,200:465-471.
doi: 10.1016/j.proeng.2017.07.065
[6] WU G, MA L, LIU L, et al. Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nano-tubes[J]. Materials & Design, 2016,89:1343-1349.
[7] 景鹏展, 朱姝, 余木火, 等. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS) 热塑性复合材料[J]. 材料工程, 2016,44(3):21-27.
JING Pengzhan, ZHU Shu, YU Muhuo, et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CCF/PPS) thermoplastic composites based on surface modification of carbon fiber[J]. Journal of Materials Engineering, 2016,44(3):21-27.
[8] HAYASHI R, KOSUKEGAWA H, TAKAGIT . Evaluation of influence of surface chemical modification on fiber in interfacial shear strength between PP/PA polymer alloy and carbon single filament[J]. Journal of the Japan Society of Mechanical Engineers, 2016,4(50):1-15.
[9] AGEORGES C, YE L. State of the Art in Fusion Bonding of Polymer Composites[M]. London: Fusion Bonding of Polymer Composites, 2002: 7-64.
[10] PALMER J, GHITA O R, SAVAGE L, et al. Successful closed-loop recycling of thermoset compo-sites[J]. Composites Part A, 2009,40:490-498.
[11] OGI K, NISHIKAWA T, OKANO Y, et al. Mechanical properties of ABS resin reinforced with recycled CFRP[J]. Advance Composite Material, 2007,16:181-194.
[12] PALMER J, SAVAGE L, GHITA O R, et al. Sheet moulding compound (SMC) from carbon fibre recyc-late[J]. Composites: Part A, 2010,41(9):1232-1237.
[13] YANG Y, BOOM R, IRION B, et al. Recycling of composite materials[J]. Chemical Engineering & Processing Process Intensification, 2012,51(1):53-68.
[14] MEYER L O, SCHULTE K. CFRP-recycling following a pyrolysis route: process optimization and potentials[J]. Journal of Composite Material, 2009,43:1121-1132.
[15] PICKERING S J, KELLY R M, KENNERLEY J R, et al. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites[J]. Composite Science and Technology, 2000,60:509-523.
[16] LESTER E, KINGMAN S, WONG K H, et al. Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study[J]. Materials Research Bbulletin, 2004,39:1549-1556.
[17] YANG J, LIU J, LIU W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrationsinnitrogen-oxygen atmosphere[J]. Journal of Analytical & Applied Pyrolysis, 2015,112:253-261.
[18] PIMENTA S, PINHO S T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook[J]. Waste Manage, 2011,31:378-392.
[19] YIP H L H, PICKERING S J, RUDD C D. Characterisation of carbon fibres recycled from scrap composites using fluidised bed process[J]. Plastics Rubber and Composite, 2002,31:278-282.
[20] MARSH G. Reclaiming value from post-use carbon composite[J]. Reinforced Plastics, 2008,52(7):36-39.
[21] BINNER E, MEDIERO M, HUDDLE T, et al. Factors affecting the microwave coking of coals and the implications on microwave cavity design[J]. Fuel Processing Technology, 2014,125(9):8-17.
[22] PALMER J, SAVAGE L, GHITA O R, et al. Sheet moulding compound (SMC) from carbon fibre recyc-late[J]. Composites: Part A, 2010,41:1232-1237.
[23] YANG Y, BOOM R, IRION B, et al. Recycling of composite materials[J]. Chemical Engineering & Processing Process Intensification, 2012,51(1):53-68.
[24] MEYER L O, SCHULTE K. CFRP-recycling following a pyrolysis route: process optimization and potentials[J]. Journal of Composite Material, 2009,43:1121-1132.
[25] PICKERING S J, KELLY R M, KENNERLEY J R, et al. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites[J]. Composite Science and Technology, 2000,60:509-523.
[26] LESTER E, KINGMAN S, WONG K H, et al. Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study[J]. Materials Research Bbulletin, 2004,39:1549-1556.
[27] YANG J, LIU J, LIU W, et al. Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrationsinnitrogen-oxygen atmosphere[J]. Journal of Analytical & Applied Pyrolysis, 2015,112:253-261.
[28] PIMENTA S, PINHO S T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook[J]. Waste Manage, 2011,31:378-392.
[29] YIP H L H, PICKERING S J, RUDD C D. Characterisation of carbon fibres recycled from scrap composites using fluidised bed process[J]. Plastics Rubber and Composite, 2002,31:278-282.
[30] MARSH G. Reclaiming value from post-use carbon composite[J]. Reinforced Plastics, 2008,52(7):36-39.
[31] BINNER E, MEDIERO M, HUDDLE T, et al. Factors affecting the microwave coking of coals and the implications on microwave cavity design[J]. Fuel Processing Technology, 2014,125(9):8-17.
[32] WANG Y, LIU J, WU G, et al. Recycling of carbon fiber reinforced epoxy resin cured with anhydride in subcritical water[J]. Chinese Journal of Applied Chemistry, 2013,30:643-647.
[33] 陈丕钰. 碳纤维增强复合材料的电化学回收方法研究[D]. 深圳:深圳大学, 2017: 78-82.
CHEN Peiyu. Electrochemical recovery of carbon fiber reinforced composites[D]. Shenzhen:Shenzhen University, 2017: 78-82.
[34] SHI J, BAO L. Optimum decomposition conditions for glass fiber reinforced plastic recycling by superheated steam[J]. Japanese Journal of Applied Physics, 2011,50(1):1-5.
[35] SHI J, BAO L, KOBAYASHI R, et al. Reusing recycled fibers in high-value fiber-reinforced polymer composites: improving bending strength by surface cleaning[J]. Composites Science and Technology, 2012,72(11):1298-1303.
[36] DENISSEN W, DROESBEKE M, NICOLAY R, et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers[J]. Nature Communications, 2017(8):14-57.
[37] RÖTTGER M, DOMENECH T, VAND W R, et al. High-performance vitrimers from commodity thermoplastics through dioxaborolane metajournal[J]. Science, 2017,356(6333):62.
pmid: 28386008
[38] 梁波, 覃兵, 李欣. 碳纤维增强可降解环氧树脂基复合材料[C]//第二届中国国际复合材料科技大会论文集. 镇江:中国复合材料学会, 2015: 72-78.
LIANG Bo, TAN Bing, LI Xin. Carbon fiber reinforced degradable epoxy resin matrix composites[C]//Second China International Conference on Composite Materials Science and Technology. Zhenjiang: China Society of Composite Materials, 2015: 72-78.
[39] 于天淼, 高华兵, 王宝铭, 等. 碳纤维增强热塑性复合材料成型工艺的研究进展[J]. 工程塑料应用, 2018,46(4):139-144.
YU Tianmiao, GAO Huabing, WANG Baoming, et al. Reserch progress of molding process of carbon fiber reinforced thermoplastic composites[J]. Engineering Plastics Application, 2018,46(4):139-144.
[40] 刘旭. 一种连续纤维增强热塑性复合材料废料回收利用方法: 103786352A[P]. 2014-05-14.
LIU Xu. A method for recycling waste of continuous fiber reinforced thermoplastic composites: 103786352A[P]. 2014-05-14.
[41] LONGANA M L, ONG N, YU H N, et al. Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (high performance discontinuous fibre) method[J]. Composite Structures, 2016,153:271-277.
[42] GUELL D C, GRAHAM A L. Improved mechanical properties in hydrodynamically aligned, short-fiber composite materials[J]. Journal of Composite Material, 1996,30(1):2-12.
[43] FLEMMING T. A new aligned short-carbon-fiber-reinforced thermoplastic prepreg[J]. Advance Composite Material, 1996,5(2):151-159.
[44] WAN Y, TAKAHASHI J. Tensile and compressive properties of chopped carbon fiber tapes reinforced thermoplastics with different fiber lengths and molding pressures[J]. Composites Part A: Applied Science & Manufacturing, 2016,87:271-281.
[45] YAMASHITA S, SONEHARA T, TAKAHASHI J, et al. Effect of thin-ply on damage behaviour of continuous and discontinuous carbon fibre reinforced thermoplastics subjected to simulated lightning strike[J]. Composites Part A: Applied Science & Manufacturing, 2017,95:132-140.
[46] LIU X, TAKAHASHI J, WAN Y, et al. Determination of transverse flexural and shear moduli of chopped carbon fiber tape-reinforced thermoplastic by vibra-tion[J]. Journal of Composite Materials, 2018,52:21-31.
[47] 田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J]. 航空制造技术, 2016,59(15):26-31.
TIAN Xiaoyong, LIU Tengfei, YANG Chuncheng, et al. 3D printing for high performance fiber reinforced polymer composites and exploration on its applications[J]. Aeronautical Manufacturing Technology, 2016,59(15):26-31.
[1] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[2] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[3] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[4] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[5] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[6] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[7] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[8] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/ 涤纶刺绣心电电极制备及其性能 [J]. 纺织学报, 2020, 41(01): 56-62.
[9] 张泽, 徐卫军, 康宏亮, 徐坚, 刘瑞刚. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019, 40(12): 152-161.
[10] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟, . 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[11] 郑振荣, 智伟, 韩晨晨, 赵晓明, 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43.
[12] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173-180.
[13] 叶伟, 孙雷, 余进, 孙启龙. 磁性颗粒/碳纤维轻质柔软复合材料制备及其吸波性能[J]. 纺织学报, 2019, 40(01): 97-102.
[14] 马晓红 檀江涛 秦志刚. 碳纤维二维编织管状织物的编织工艺[J]. 纺织学报, 2018, 39(06): 64-69.
[15] 袁汝旺 陈瑞 蒋秀明 周国庆. 碳纤维多层织机打纬机构运动学分析与尺度综合[J]. 纺织学报, 2017, 38(11): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!