纺织学报 ›› 2019, Vol. 40 ›› Issue (06): 171-175.doi: 10.13475/j.fzxb.20190201406

• 纺织科技新见解学术沙龙专栏:安全与防护用纺织品及其防护技术 • 上一篇    下一篇

柔性防刺涤纶/碳化硅织物的制备及其防刺性能

王新厚1,2(), 张琳梅1,2, 孙晓霞1,2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2019-02-14 修回日期:2019-03-05 出版日期:2019-06-15 发布日期:2019-06-25
  • 作者简介:王新厚(1970—),男,教授,博士。主要研究方向为纺织防护材料。E-mail: xhwang@dhu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51776034)

Preparation of flexible puncture-proof polyester/SiC and puncture-proof property

WANG Xinhou1,2(), ZHANG Linmei1,2, SUN Xiaoxia1,2   

  1. 1. College of Textile, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2019-02-14 Revised:2019-03-05 Online:2019-06-15 Published:2019-06-25

摘要:

针对目前市场上的防刺服价格高、柔韧性差、难以在军民领域得到普及的问题,通过在涤纶机织物上涂覆不同粒径的碳化硅(SiC)颗粒制得了一种柔性防刺复合材料,涂覆方式分为单次涂覆和双次涂覆。通过扫描电子显微镜观察和多层动态穿刺性能测试研究了SiC颗粒大小和涂覆方式对该复合材料防刺性能的影响,并且分析了6层单面双层涂覆方式制备的柔性防刺复合材料的耗散吸能模式。结果表明:采用180 μm SiC颗粒制得的复合材料防刺性能最好;当采用双次涂覆方式时,采用单面双层涂覆方式制得的复合材料防刺性能优于采用双面单层涂覆方式;单面双层涂覆方式制备的复合材料主要有2种能量耗散模式。

关键词: 碳化硅颗粒, 涤纶, 防刺性能, 复合材料

Abstract:

Due to the high price and poor flexibility of the puncture-proof clothing, it is hard to be popularized in neither military nor civilian field. In this study, a new kind of puncture-proof composite materials (FPPCM) with improved flexibility and low cost was fabricated by coating different sizes of silicon carbide (SiC) particles onto the polyester woven fabric. Through single coating method or double coating method, the obtained composite materials were investigated by scanning electron microscope observation and multilayer puncture-proof dynamic puncture performance test. The results show that the best puncture-proof property of the FPPCM was obtained using 180 μm SiC particles. The influence of the coating method was studied as well. The results show that the FPPCM fabricated by single layer-double sides coating method is better in stab-resistant property than that fabricated by double layer-single side coating method. Moreover, the dissipative energy absorption model of the FPPCM with six layers by single layer-double sides coating method was analyzed. It is found that there are two main energy dissipation models for the FPPCM fabricated by single side-double layer coating method.

Key words: silicon carbide particle, polyester, puncture-proof property, composite materials

中图分类号: 

  • TS941.731

图1

SiC颗粒的涂覆方式"

图2

动态测试仪器"

表1

动态穿刺性能测试结果"

样品织物 厚度/
mm
面密度/
(g·m-2)
穿刺层数
涤纶/SiC(250 μm) 1.273 670 27层未穿透
涤纶/SiC(180 μm) 1.076 670 26层未穿透
涤纶/SiC(150 μm) 0.921 670 27层穿透

图3

不同大小颗粒第1层动态穿刺显微照片(×6)"

表2

双次涂覆复合材料规格"

编号 样品织物 厚度/
mm
面密度/
(g·m-2)
刺破强
力/N
1# 150 μm SSDC 1.259 970 115.092
2# 150 μm DSSC 2.568 970 104.775
3# 180 μm SSDC 1.596 970 141.619
4# 180 μm DSSC 2.406 970 119.109
5# 250 μm SSDC 1.794 970 125.676
6# 250 μm DSSC 2.509 970 111.519

图4

动态刺破强力测试结果"

图5

不同粒径复合材料第一层断面形貌(×100)"

图6

不同粒径复合材料第6层断面形貌(×100)"

图7

SSDC复合材料的切口形貌观察"

[1] CHEN X G, ZHU F Y, WELLS G. An analytical model for ballistic impact on textile based body armour[J]. Composites Part B: Engineering, 2013,45(1):1508-1514.
[2] FELI S, POUR M H N. An analytical model for composite sandwich panels with honeycomb core subjected to high-velocity impact[J]. Composites Part B-Engineering, 2012,43(5):2439-2447.
[3] SCOTT R A. Textiles for Protection [M]. Cambridge: Woodhead Publishing, 2005: 1-22.
[4] HORSFALL I. Stab resistant body armour[D]. Cranfield: Cranfield University, 2000: 37-66.
[5] MESSIRY E M, ELTAHAN E. Stab resistance of triaxial woven fabrics for soft body armor[J]. Journal of Industrial Textiles, 2016,45(5):1062-1082.
[6] 顾肇文. 柔性复合防刺服机理研究[J]. 纺织学报, 2006,27(8):80-84.
GU Zhaowen. Sudy on the mechanism of flexible composite stab-resistant clothing[J]. Journal of Textile Science, 2006,27(8):80-84.
[7] 王颖, 徐伯俊, 徐耀林. 超高分子量聚乙烯织物的防刺穿性[J]. 上海纺织科技, 2012,40(2):50-51.
WANG Ying, XU Bojun, XU Yaolin. The stabbing-resistance of Ultrahigh molecular weight polye-thylene[J]. Shanghai Textile Science and Technology, 2012,40(2):50-51.
[8] ZIELINSKA D, DELCZYK-OLEJNICZAK B, WIERZBICKI L, et al. Investigation of the effect of para-aramid fabric impregnation with shear thickening fluid on quasi-static stab resistance[J]. Textile Research Journal, 2014,84(15):1569-1577.
[9] LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of kevlar woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003,38(13):2825-2833.
[10] HASSIM N, AHMAD M R, AHMAD W Y W, et al. Puncture resistance of natural rubber latex unidirectional coated fabrics[J]. Journal of Industrial Textiles, 2012,42(2):118-311.
[11] 方心灵, 张艳朋. 树脂对芳纶无纬布防弹防刺性能的影响[J]. 高科技纤维与应用, 2009,34(3):21-23.
FANG Xinling, ZHANG Yanpeng. Effect of resin on bullet-proof and stab-resistant properties of kevlar UD cloth[J]. Hi-Tech Fiber & Application, 2009,34(3):21-23.
[12] JR J B M, WETZEL E D, HOSUR M V, et al. Stab and puncture characterization of thermoplastic-impregnated aramid fabrics[J]. International Journal of Impact Engineering, 2009,36(9):1095-1105.
[13] 晏义伍, 曹海琳, 赵金华. 纳米混杂Kevlar/Surlyn复合材料的制备与防刺性能研究[J]. 中国个体防护装备, 2012, (3):5-9.
YAN Yiwu, CAO Hailin, ZHAO Jinhua. Preparation of nano hybrid Kevlar /Surlyn composites and study on the stab-resistance[J]. China Personal Protective Equipment, 2012(3):5-9.
[14] LEVINSKY A A, SAPOZHNIKOV S B, GRASS T S. Development of knife- and bullet-impact-resistant composite structures[J]. Mechanics of Composite Materials, 2012,48(4):405-414.
[15] 张政, 刘晓艳, 于伟东. 涂层防刺织物的制备及其防刺机制[J]. 纺织学报, 2018,39(3):108-113,119.
ZHANG Zheng, LIU Xiaoyan, YU Weidong. Preparation and stab-resistant mechanism of coated stab-resistant fabric[J]. Journal of Textile Research, 2018,39(3):108-113,119.
[1] 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121.
[2] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[3] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[4] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[5] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[6] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[7] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P( St-NMA) 光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[8] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[9] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[10] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[11] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[12] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[13] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[14] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[15] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!