纺织学报 ›› 2019, Vol. 40 ›› Issue (07): 103-107.doi: 10.13475/j.fzxb.20180506605

• 染整与化学品 • 上一篇    下一篇

低温等离子体在涤纶表面改性中的应用

张欢1, 闫俊1(), 王晓武1, 焦安东1, 李红1, 郑来久1, 何婷婷2   

  1. 1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
    2. 国家知识产权局专利局专利审查协作北京中心, 北京 100160
  • 收稿日期:2018-05-28 修回日期:2019-04-17 出版日期:2019-07-15 发布日期:2019-07-25
  • 通讯作者: 闫俊
  • 作者简介:张欢(1996-),男,硕士生。主要研究方向为等离子体改性技术。
  • 基金资助:
    辽宁省博士科研启动基金项目(201601270);辽宁省科技厅科学事业公益研究基金项目(20170052)

Application of low temperature plasma in surface modification of polyester fiber

ZHANG Huan1, YAN Jun1(), WANG Xiaowu1, JIAO Andong1, LI Hong1, ZHENG Laijiu1, HE Tingting2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Patent Examination Cooperation(Beijing) Center of the Patent Office, China National Intellectual Property Administration, Beijing 100160, China
  • Received:2018-05-28 Revised:2019-04-17 Online:2019-07-15 Published:2019-07-25
  • Contact: YAN Jun

摘要:

针对涤纶亲水性能差的问题,采用低温等离子体对涤纶织物进行表面改性处理,探究在气压为300 Pa,功率为5.5 W时介质阻挡放电等离子体对涤纶织物性能的影响。测定处理后织物的动摩擦因数、强力、亲水性等性能以及放置过程中的性能变化,并对涤纶的微观形态以及表面化学成分进行表征,分析涤纶的等离子体改性机制。结果表明:等离子体对涤纶表面刻蚀,在纤维表面产生裂痕和空洞,增大了纤维的表面积;动摩擦因数随着等离子体处理时间的延长而增大,强力随处理时间的延长而降低,最高降低了25%;处理后织物的毛细效应提高了75%,对水的接触角降低了33.3%,涤纶表面羟基增多,有效改善涤纶的吸湿性与亲水性;等离子体处理涤纶具有一定的时效性。

关键词: 等离子体, 涤纶织物, 介质阻挡放电, 亲水性, 摩擦因数

Abstract:

In view of the problem of poor hydrophilicity of polyester, the surface modification of polyester fabric was carried out by low temperature plasma. The influence of dielectric barrier discharge plasma on the performance of polyester fabric was investigated under the pressure of 300 Pa and power of 5.5 W. The dynamic friction coefficient, strength, hydrophilicity and other properties of the treated fabric were measured, and the microscopic morphology and surface chemical composition of the polyester fiber were characterized. The mechanism of plasma-modified polyester was proposed. The results show that the plasma etches the polyester surface to generate cracks and voids on the surface of the fiber, which increases the surface area of the polyester fiber. The dynamic friction coefficient increases with the increase of plasma treatment time, and the strength decreases by up to 25% with the increase of treatment time. The capillary effect of the treated fabric is increased by 75%, the contact angle to water is reduced by 33.3%, and the surface hydroxyl of the polyester is increased, which effectively improves the hygroscopicity and hydrophilicity of the polyester. The plasma treated polyester has certain timeliness.

Key words: plasma, polyester fabric, dielectric barrier discharge, hydrophilicity, friction coefficient

中图分类号: 

  • TS156

图1

等离子体处理时间对纤维动摩擦因数的影响"

图2

等离子体处理时间对织物毛效的影响"

图3

等离子体处理时间对织物接触角的影响"

表1

等离子体处理时间对织物断裂强力的影响"

处理时间/s 断裂强力/N 强度降低率/%
0 783 0
15 613 21.7
30 595 24.0
60 586 25.1
120 493 37.0

图4

等离子体处理前后涤纶的红外光谱图"

图5

等离子体处理前后涤纶的SEM照片"

图6

等离子体处理涤纶原理"

图7

等离子体处理后放置时间与接触角关系"

[1] 张爽, 吴晓青 . 涤纶改性方法研究进展[J]. 天津纺织科技, 2017(2):1-3.
ZHANG Shuang, WU Xiaoqing . Research progress of modification method of polyester[J]. Tianjin Textile Technology, 2017(2):1-3.
[2] 唐丽华, 任婉婷, 李鑫 , 等. 低温等离子体亲水改性聚丙烯熔喷非织造布[J]. 纺织学报, 2010,31(4):30-32.
TANG Lihua, REN Wanting, LI Xin , et al. Hydrothermal modified hydrophilic melt-blown nonwoven fabrics[J]. Journal of Textile Research, 2010,31(4):30-32.
[3] 唐晓亮, 任忠夫, 李驰 , 等. 常压等离子体表面改性涤纶织物[J]. 纺织学报, 2007,28(8):63-65,74.
TANG Xiaoliang, REN Zhongfu, LI Chi , et al. Surface modification of polyester fabrics by atmospheric pressure plasma[J]. Journal of Textile Research, 2007,28(8):63-65,74.
[4] 张庆, 王善元, 杨国荣 , 等. 低温等离子体处理涤纶织物的染色性能[J]. 印染, 2002,28(11):1-3.
ZHANG Qing, WANG Shanyuan, YANG Guorong , et al. Dyeing properties of low temperature plasma treated polyester fabrics[J]. China Dyeing & Finishing, 2002,28(11):1-3.
[5] 刘欣宇, 刘大伟 . 大气压非平衡等离子体射流活性粒子产生机制[J]. 高电压技术, 2016,42(2):452-461.
LIU Xinyu, LIU Dawei . Generation mechanism of non-equilibrium plasma jet active particles at atmospheric pressure[J]. High Voltage Technology, 2016,42(2):452-461.
[6] 王燕, 赵艳辉, 张芝涛 , 等. DBD等离子体及其应用技术的发展[J]. 自然杂志, 2002(5):277-282.
WANG Yan, ZHAO Yanhui, ZHANG Zhitao , et al. Development of DBD plasma and its application technology[J]. Natural Journal, 2002(5):277-282.
[7] WANG D, FENG K, ZHANG X , et al. The cold and atmospheric-pressure air surface barrier discharge plasma for large-are sterilization applications[J]. Applied Physics Letters, 2011,98(16):161-501.
[8] LIU W, CHEN X, LEI X , et al. Surface processing of
polyester canvas using atmospheric pressure air glow discharge plasma[J]. Plasma Chemistry and Plasma Processing, 2017,37(2):465-474.
[9] JUNKAR I, MODIC M, MOZETI M . Modification of PET surface properties using extremely non-equilibrium oxygen plasma[J]. Open Chemistry, 2015,13(1):490-496.
[10] 李宏英, 傅佳佳 . 利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J]. 材料导报, 2018(4):626-630,649.
LI Hongying, FU Jiajia . Enhancing the effect of electron beam irradiation and hydrophilic modification of polyester fabrics by plasma pretreatment[J]. Materials Review, 2018 ( 4):626-630,649.
[11] 王春莹, 王潮霞 . 真空氧等离子体表面改性涤纶织物研究[J]. 合成纤维工业, 2010,33(5):28-30.
WANG Chunying, WANG Chaoxia . Study on surface modification of polyester fabric by vacuum oxygen plasma[J]. China Synthetic Fiber Industry, 2010,33(5):28-30.
[12] 张春明, 房宽峻 . 等离子体处理的时效性对涤纶表面润湿性的影响[J]. 济南纺织服装, 2014(3):1-4.
ZHANG Chunming, FANG Kuanjun . Effect of plasma treatment on surface wettability of polyester fibers[J]. Jinan Textile Clothing, 2014(3):1-4.
[13] 李国涵, 张贤国, 洪约利 , 等. 等离子体技术在合成纤维改性中的应用进展[J]. 南通大学学报(自然科学版), 2017(1):45-52.
LI Guohan, ZHANG Xianguo, HONG Yueli , et al. Advances in the application of plasma technology in the modification of synthetic fibers[J]. Journal of Nantong University (Natural Science Edition), 2017(1):45-52.
[14] 戴杰, 郭晓玲, 申国栋 , 等. 碱减量和等离子体处理对涤纶织物的影响[J]. 针织工业, 2015(5):52-55.
DAI Jie, GUO Xiaoling, SHEN Guodong , et al. Effects of alkali deweighting and plasma finishing on polyester fabric[J]. Knitting Industries, 2015(5):52-55.
[15] 陆伟, 崔运花, 刁颖 , 等. 常压等离子体技术改善涤纶及涤棉纱的吸湿性能[J]. 东华大学学报(自然科学版), 2011,37(2):138-141,161.
LU Wei, CUI Yunhua, DIAO Ying , et al. Moisture-absorption improvement of polyester and T/C yarns by atmospheric pressure plasma technology[J]. Journal of Donghua University (Natural Science Edition), 2011,37(2):138-141,161.
[16] 王振欣, 梁小平, 王月然 , 等. 低温等离子体改性效果时效性的研究进展[J]. 纺织学报, 2011,32(2):149-154.
WANG Zhenxin, LIANG Xiaoping, WANG Yueran , et al. Research progress on the time effect of low temperature plasma modification[J]. Journal of Textile Research, 2011,32(2):149-154.
[1] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[2] 陈千, 廖振, 徐明, 朱亚伟. 等离子体处理对聚四氟乙烯膜粘接性能的影响[J]. 纺织学报, 2020, 41(08): 15-21.
[3] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P( St-NMA) 光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[4] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[5] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[6] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
[7] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[8] 庄群, 张飞, 杜兆芳, 姜华. 改性芳纶与环氧树脂复合体的制备及其防刺性能[J]. 纺织学报, 2019, 40(12): 98-103.
[9] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[10] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2 / 氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[11] 戴悦, 张瑞萍, 王秋萍, 胡亚楠, 张贤国. 柠檬酸/ β-环糊精整理涤纶织物的消臭效果[J]. 纺织学报, 2019, 40(12): 104-108.
[12] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[13] 林佳濛, 缪旭红, 万爱兰. 等离子体预处理对聚吡咯/涤纶经编导电织物结构和性能的影响[J]. 纺织学报, 2019, 40(09): 97-101.
[14] 杜晓冬, 林芳兵, 蒋金华, 陈南梁, 刘燕平. 氧等离子体改性对聚酰亚胺纤维表面性能的影响[J]. 纺织学报, 2019, 40(09): 22-27.
[15] 姜珊 万爱兰 缪旭红 蒋高明 马丕波 陈晴. 等离子体处理对聚吡咯/ 涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!