纺织学报 ›› 2019, Vol. 40 ›› Issue (07): 163-168.doi: 10.13475/j.fzxb.20180605706
陈旭1, 吴炳洋2, 范滢1, 杨木生1
CHEN Xu1, WU Bingyang2, FAN Ying1, YANG Musheng1
摘要:
为提升普通织物的低温抵抗性能,将具有蓄热调温功能的相变微胶囊涂覆至织物表面制得蓄热调温织物,通过Fluent 软件对复合织物的低温防护过程进行模拟,在此基础上设置了蓄热调温织物的低温防护试验对模型的模拟精度进行检验,并模拟探究了微胶囊的相变潜热以及其在织物中所占的体积分数对蓄热调温织物低温防护性能的影响。结果表明:数值模拟结果可显示不同时间节点蓄热调温织物的温度场分布情况以及各区域的温度变化趋势,且试验结果与模拟结果的误差小于8.64%,该模拟结果可较为准确地再现蓄热调温织物的低温防护过程;当微胶囊的相变潜热由50 J/g增加至200 J/g时,织物的低温防护时间延长了70.1%;当微胶囊的质量分数由1%增加至5%时,织物的低温防护时间由214 s延长至388 s,同比提升了81.3%。
中图分类号:
[1] | 朱方龙, 樊建彬, 冯倩倩 , 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132. |
ZHU Fanglong, FAN Jianbin, FENG Qianqian , et al. Application and feasibility analysis of phase change materials for fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
doi: 10.1177/004051756503500205 |
|
[2] | 张涛, 李宏伟, 王建明 , 等. 端羟基聚丁二烯聚氨酯相变微胶囊的制备及其性能[J]. 纺织学报, 2018,39(3):86-91. |
ZHANG Tao, LI Hongwei, WANG Jianming , et al. Preparation and properties of hydroxyl-terminated polybutadiene phase-change polyurethane micro-capsule[J]. Journal of Textile Research, 2018,39(3):86-91.
doi: 10.1177/004051756903900113 |
|
[3] | 王瑞, 孙艳丽, 刘星 , 等. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018,39(2):119-125. |
WANG Rui, SUN Yanli, LIU Xing , et al. Mechanical and thermal properties of phase change microcapsules modified with carbon nanotubes[J]. Journal of Textile Research, 2018,39(2):86-91.
doi: 10.1177/004051756903900113 |
|
[4] | 王瑞, 陈旭, 吴炳洋 , 等. 正二十烷/海藻酸钠微胶囊的锐孔-凝固浴法制备[J]. 纺织学报, 2016,37(7):82-87. |
WANG Rui, CHEN Xu, WU Bingyang , et al. Preparation of n-eicosane/ sodium alginates phase change microcapsules by hole-coagulation bath[J]. Journal of Textile Research, 2016,37(7):82-87. | |
[5] | 姚鹏成, 夏鑫 . 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017,38(1):67-72. |
YAO Pengcheng, XIA Xin . Preparation and properties of polylactic acid coated phase change material composite fabric[J]. Journal of Textile Research, 2017,38(1):67-72. | |
[6] | 孙艳丽, 王瑞, 刘星 , 等. 轻薄低温防护手套用复合织物的制备及其性能[J]. 纺织学报, 2017,38(5):58-63. |
SUN Yanli, WANG Rui, LIU Xing , et al. Preparation and properties of composite fabric for light-weight low temperature protective gloves[J]. Journal of Textile Research, 2017,38(5):58-63. | |
[7] |
YANG Y, KUANG J, WANG H , et al. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy[J]. Solar Energy Materials and Solar Cells, 2016,151:89-95.
doi: 10.1016/j.solmat.2016.02.020 |
[8] | HUANG X, ALVA G, JIA Y , et al. Morphological characterization and applications of phase change materials in thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2017,72:128-145. |
[9] |
GENG X, LI W, WANG Y , et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018,217:281-294.
doi: 10.1016/j.apenergy.2018.02.150 |
[10] | 李凤志, 吴成云, 李毅 . 附加相变微胶囊多孔织物热湿传递模型研究[J]. 大连理工大学学报, 2008(2):162-167. |
LI Fengzhi, WU Chengyun, LI Yi . A model of heat and moisture transfer in porous textiles with microencapsulated phase change materials[J]. Journal of Dalian University of Technology, 2008(2):162-167. | |
[11] |
LI Fengzhi, LI Yi . A computational analysis for effects of fibre hygroscopicity on heat and moisture transfer in textiles with PCM microcapsules[J]. Modelling and Simulation in Materials Science and Engineering, 2007,15(3):223.
doi: 10.1088/0965-0393/15/3/003 |
[12] |
SAFAVI A, AMANI-TEHRAN M, LATIFI M . A new approach to theoretical modeling of heat transfer through fibrous layers incorporated with microcapsules of phase change materials[J]. Thermochimica Acta, 2015,604:24-32.
doi: 10.1016/j.tca.2015.01.023 |
[13] | 吴乐凡, 向忠, 黄晓东 , 等. 含芯棒水平换热管冷凝传热数值模拟[J]. 纺织学报, 2017,38(10):118-123. |
WU Lefan, XIANG Zhong, HUANG Xiaodong , et al. Numerical simulation of condensation heat transfer in mandrel-containing horizontal heat exchanger tube[J]. Journal of Textile Research, 2017,38(10):118-123.
doi: 10.1177/004051756803800202 |
|
[14] | 吴佳佳, 唐虹 . 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016,37(9):37-41. |
WU Jiajia, TANG Hong . ABAQUS based finite element analysis of heat transfer through woven fabrics[J]. Journal of Textile Research, 2016,37(9):37-41. | |
[15] | 袁龙超, 李新荣, 郭臻 , 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178. |
YUAN Longchao, LI Xinrong, GUO Zhen , et al. Research progress in influence of vortex spinning nozzle on flow field[J]. Journal of Textile Research, 2018,39(1):169-178. |
[1] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[2] | 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144. |
[3] | 李斯湖, 沈敏, 白聪, 陈亮. 喷气织机辅助喷嘴结构参数对流场特性的影响[J]. 纺织学报, 2019, 40(11): 161-167. |
[4] | 郑振荣 智伟 韩晨晨 赵晓明 裴晓园. 碳纤维织物在热流冲击下的热传递数值模拟[J]. 纺织学报, 2019, 40(06): 38-43. |
[5] | 曹海建 陈红霞 黄晓梅. 玻璃纤维/ 环氧树脂基夹芯材料侧压性能数值模拟 [J]. 纺织学报, 2019, 40(05): 59-63. |
[6] | 郭臻 李新荣 卜兆宁 袁龙超. 喷气涡流纺中纤维运动的三维数值模拟 [J]. 纺织学报, 2019, 40(05): 131-135. |
[7] | 广少博 金玉珍 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139. |
[8] | 刘倩楠 张涵 刘新金 苏旭中. 基于ABAQUS 的三原组织机织物拉伸力学性能模拟[J]. 纺织学报, 2019, 40(04): 44-50. |
[9] | 尚珊珊 郁崇文 杨建平 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167. |
[10] | 史倩倩 高备 林惠婷 张玉泽 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68. |
[11] | 闫琳琳 邹专勇 卫国 程隆棣. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(09): 139-145. |
[12] | 胥光申 孔双祥 刘洋 罗时杰. 基于Fluent的喷气织机辅助喷嘴综合性能[J]. 纺织学报, 2018, 39(08): 124-129. |
[13] | 杨瑞华 刘超 薛元 高卫东. 转杯复合纺成纱器内流场模拟及纱线质量分析[J]. 纺织学报, 2018, 39(03): 26-30. |
[14] | 林惠婷 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(02): 55-61. |
[15] | 王瑞 孙艳丽 刘星 杨华 李博. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(02): 119-125. |
|