纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 35-41.doi: 10.13475/j.fzxb.20180805207
周颖1, 王闯1, 朱佳颖1, 黄林汐1, 杨丽丽1, 余厚咏1, 姚菊明1(), 金万慧2
ZHOU Ying1, WANG Chuang1, ZHU Jiaying1, HUANG Linxi1, YANG Lili1, YU Houyong1, YAO Juming1(), JIN Wanhui2
摘要:
为制备分散性良好的氧化锌(ZnO)复合光催化材料,采用一步法混合聚丙烯纺粘非织造布(PPEN)和锌铵溶液,通过直接沉淀法负载具有不同形貌和光催化性能的氧化锌纳米粒子。借助扫描电子显微镜、X射线衍射仪、热重分析仪及紫外-可见漫反射光谱仪考察反应温度对样品微观形貌、分散性、结晶性、热稳定性和光催化性的影响。结果表明:经75 ℃处理后棒状ZnO微米粒子均匀包覆在非织造布表面;经75 ℃处理得到的PPFN/ZnO复合材料较60、90 ℃在X射线衍射特征峰处有着更尖锐的峰型,结晶度为88.0%,其最大降解温度由287.2 ℃提高到392.9 ℃,增加了105.7 ℃;对亚甲基蓝染料光催化降解8 h后降解率达到96.04%。
中图分类号:
[1] | 张京. 水溶性ZnO量子点的制备及其性能研究[D]. 天津:天津大学, 2012: 9-10. |
ZHANG Jing. Synthesis and property studies of water-soluble ZnO quantum dots[D]. Tianjin: Tianjin University, 2012: 9-10. | |
[2] |
MCLAREN A, VALDES-SOLIS T, LI G, et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity[J]. Journal of the American Chemical Society, 2009,131(35):12540-12541.
doi: 10.1021/ja9052703 pmid: 19685892 |
[3] | TSENG Y K, HUANG C J, Cheng H M, et al. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films[J]. Advanced Functional Materials, 2003,13(10):811-814. |
[4] | YANG R T, YU H Y, SONG M L, et al. Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method[J]. Cellulose, 2016,23(3):1871-1884. |
[5] | 许淑燕, 张培培, 熊杰. 氧化锌纳米纤维的制备及其光催化性能[J]. 纺织学报, 2011,32(3):15-20. |
XU Shuyan, ZHNG Peipei, XIONG Jie. Preparation and photocatalytic activity of zinc oxide nanofibers[J]. Journal of Textile Research, 2011,32(3):15-20. | |
[6] | HASSAN J J, HASSAN Z, ABU-HASSAN H. High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVA complex seed layer on Si substrates[J]. Journal of Alloys and Compounds, 2011,509(23):6711-6719. |
[7] | YU H Y, CHEN G Y, WANG Y B, et al. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity[J]. Cellulose, 2015,22(1):261-273. |
[8] | LEE J M, PYUN Y B, YI J, et al. ZnO nanorod-graphene hybrid architectures for multifunctional conductors[J]. The Journal of Physical Chemistry C, 2009,113(44):19134-19138. |
[9] | 赵殿栋. 负载纳米ZnO非织造材料的制备和性能研究[D]. 无锡:江南大学, 2010: 3-4. |
ZHAO Diandong. Preparation and properties of nonwovens loaded with nano-ZnO[D]. Wuxi: Jiangnan University, 2010: 3-4. | |
[10] | 蓝杰蕊, 沈锦玉, 李玖明, 等. 紫外光固化技术对聚丙烯非织造布的亲水改性[J]. 纺织学报, 2017,38(5):98-103. |
LAN Jierui, SHEN Jinyu, LI Jiuming, et al. Hydrophilic modification of polypropylene nonwoven fabric by UV curing technology[J]. Journal of Textile Research, 2017,38(5):98-103. | |
[11] |
FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
pmid: 12635268 |
[12] | 施秋萍. 纳米氧化锌晶体在棉纤维表面的在位生长及其影响因素的探讨[D]. 上海:东华大学, 2007: 9-10. |
SHI Qiuping. Study on in-situ growth of nanocrystal ZnO on cotton fabric surface and its influencing factors[D]. Shanghai: Donghua University, 2007: 9-10. | |
[13] |
MANEKKATHODI A, LU M Y, WANG C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics[J]. Advanced Materials, 2010,22(36):4059-4063.
pmid: 20512820 |
[14] | 肖文昌. β晶型聚丙烯的结晶行为及结晶动力学[D]. 上海:复旦大学, 2009: 24-25. |
XIAO Wenchang. Crystallization behavior and crystallization kinetics of β-polypropylene[D]. Shanghai: Fudan University, 2009: 24-25. | |
[15] | XU S, FU L, PHAM T S H, et al. Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight[J]. Ceramics International, 2015,41(3):4007-4013. |
[16] | PATTERSON A L, The Scherrer formula for X-Ray particle size determination[J]. Phys Rev, 1939,56(10):978-982. |
[17] | RUSDI R, RAHMAN A A, MOHAMED N S, et al. Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures[J]. Powder Technology, 2011,210(1):18-22. |
[18] | TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi: B, 1966,15(2):627-637. |
[1] | 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14. |
[2] | 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47. |
[3] | 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6. |
[4] | 张德锁 廖艳芬 林红 陈宇岳. 一步法原位生成纳米Ag-ZnO复合整理棉织物[J]. 纺织学报, 2014, 35(3): 92-0. |
[5] | 刘玉强 陈楠楠 吕红 田保中. 纳米氧化锌-氧化铁混合溶胶对涤纶织物的抗静电效果[J]. 纺织学报, 2013, 34(4): 85-88. |
[6] | 周兆懿;赵亚萍;葛凤燕;蔡再生. 基于低温水浴法的涤纶表面氧化锌纳米棒生长[J]. 纺织学报, 2010, 31(7): 6-10. |
[7] | 苏艳孟;郑敏. nano-super(AB)微晶分散体对桑蚕丝防紫外线及抗菌性能的影响[J]. 纺织学报, 2010, 31(5): 91-96. |
[8] | 关芳兰. 纳米氧化锌功能纺织品的制备及其稳定性[J]. 纺织学报, 2009, 30(01): 64-67. |
[9] | 张海波;秦刚;吴承训. 渗入氧化锌晶须的聚丙烯腈纤维的抗静电性[J]. 纺织学报, 2007, 28(2): 11-13. |
[10] | 王浩;林红;黄晨;陈宇岳. 纳米ZnO分散液的制备及其在棉织物上的应用[J]. 纺织学报, 2006, 27(9): 40-42. |
[11] | 黄晨;王浩;方丽娜;王红;张慧娟. 纳米氧化锌和壳聚糖对棉织物的复合整理[J]. 纺织学报, 2006, 27(5): 41-44. |
|