纺织学报 ›› 2019, Vol. 40 ›› Issue (09): 35-41.doi: 10.13475/j.fzxb.20180805207

• 纤维材料 • 上一篇    下一篇

非织造布表面形貌可控氧化锌纳米粒子的构筑

周颖1, 王闯1, 朱佳颖1, 黄林汐1, 杨丽丽1, 余厚咏1, 姚菊明1(), 金万慧2   

  1. 1.浙江理工大学 材料与纺织学院、丝绸学院, 浙江 杭州 310018
    2.湖北省纤维检验局, 湖北 武汉 430000
  • 收稿日期:2018-08-23 修回日期:2019-05-31 出版日期:2019-09-15 发布日期:2019-09-23
  • 通讯作者: 姚菊明
  • 作者简介:周颖(1976—),女,实验师,博士。主要研究方向为纤维材料结构与性能。
  • 基金资助:
    浙江省科技厅公益项目(2017C37014);浙江理工大学科研启动基金项目(19012099-Y)

Preparation of controllable ZnO nanoparticles on surface of nonwovens

ZHOU Ying1, WANG Chuang1, ZHU Jiaying1, HUANG Linxi1, YANG Lili1, YU Houyong1, YAO Juming1(), JIN Wanhui2   

  1. 1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Hubei Province Fiber Inspection Bureau, Wuhan, Hubei 430000, China
  • Received:2018-08-23 Revised:2019-05-31 Online:2019-09-15 Published:2019-09-23
  • Contact: YAO Juming

摘要:

为制备分散性良好的氧化锌(ZnO)复合光催化材料,采用一步法混合聚丙烯纺粘非织造布(PPEN)和锌铵溶液,通过直接沉淀法负载具有不同形貌和光催化性能的氧化锌纳米粒子。借助扫描电子显微镜、X射线衍射仪、热重分析仪及紫外-可见漫反射光谱仪考察反应温度对样品微观形貌、分散性、结晶性、热稳定性和光催化性的影响。结果表明:经75 ℃处理后棒状ZnO微米粒子均匀包覆在非织造布表面;经75 ℃处理得到的PPFN/ZnO复合材料较60、90 ℃在X射线衍射特征峰处有着更尖锐的峰型,结晶度为88.0%,其最大降解温度由287.2 ℃提高到392.9 ℃,增加了105.7 ℃;对亚甲基蓝染料光催化降解8 h后降解率达到96.04%。

关键词: 氧化锌, 聚丙烯纺粘非织造布, 形貌调控, 光催化性能

Abstract:

In order to prepare ZnO composite photocatalytic material with good dispersibility, a one-step method was adopte to mix polypropylene spunbonded nonwoven fabric (PPEN) and zinc ammonium solution, influences ZnO nanoparticles with different morphologies and photocatalytic properties were loaded by direct precipitation. The influences of reaction temperature on the morphology, dispersibility, crystallization, thermal stability and photocatalytic properties of ZnO particles on the surface of the fibers were investigated by scanning electron microscopy, X-ray diffractometer (XRD), thermogravimetric analyzer and UV-visible diffuse reflectance spectroscopy. The results show that rod-shaped ZnO microparticles are uniformly coated on the surface of the nonwoven fabric after treatment at 75 ℃, and the PPFN/ZnO composites obtained at 75 ℃ have sharper peaks on the XRD chart than those obtained at 60 ℃ and 90 ℃, whose crystallinity is 88.0%. Furthermore, its maximum degradation temperature increases from 287.2 ℃ to 392.9 ℃, with an increase of 105.7 ℃, and the PPFN/ZnO composites obtained at 75 ℃ has a degradation ratio of 96.04% after photocatalytic degradation of methylene blue dye for 8 h.

Key words: ZnO, polypropylene spunbond nonwoven, morphological regulation, photocatalytic performance

中图分类号: 

  • TS176

图1

PPFN及不同处理温度所得PPFN/ZnO复合材料的SEM照片"

表1

表面负载氧化锌的形貌与长度及直径"

样品 ZnO形貌 平均长度/nm 平均直径/nm
PPFN (18.8±0.9)×1 000
PPFN60 不规则颗粒状 373
PPFN75 棒状,均一 1 320 175
PPFN90 棒状,不均一 1 650 278

图2

PPFN 及PPFN/ZnO复合材料元素分析"

图3

非织造布纤维表面构筑ZnO纳米粒子的形成机制示意图"

图4

PPFN和PPFN/ZnO复合材料的X射线衍射图谱"

表2

PPFN/ZnO复合材料中ZnO的平均结晶度和晶粒尺寸"

样品 结晶度/
%
晶粒尺寸/nm
(100) (101) (110) (112)
PPFN60 50.2 5.1 4.2 4.9 3.9
PPFN75 88.0 5.9 5.0 5.6 4.5
PPFN90 76.9 5.4 4.6 5.1 4.4

图5

PPFN和PPFN/ZnO复合材料的TGA和DTG曲线"

表3

PPFN和PPFN/ZnO复合材料的热质量损失数据"

样品 T0/℃ Tmax/℃ 残余质量/%
PPFN 224.8 287.2 0.1
PPFN60 225.2 388.4 8.5
PPFN75 226.9 392.9 15.7
PPFN90 226.1 391.7 12.1

图6

PPFN和PPFN/ZnO复合材料紫外分析图"

图7

PPFN和PPFN/ZnO复合材料光催化降解亚甲基蓝染料的紫外吸收光谱"

[1] 张京. 水溶性ZnO量子点的制备及其性能研究[D]. 天津:天津大学, 2012: 9-10.
ZHANG Jing. Synthesis and property studies of water-soluble ZnO quantum dots[D]. Tianjin: Tianjin University, 2012: 9-10.
[2] MCLAREN A, VALDES-SOLIS T, LI G, et al. Shape and size effects of ZnO nanocrystals on photocatalytic activity[J]. Journal of the American Chemical Society, 2009,131(35):12540-12541.
doi: 10.1021/ja9052703 pmid: 19685892
[3] TSENG Y K, HUANG C J, Cheng H M, et al. Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films[J]. Advanced Functional Materials, 2003,13(10):811-814.
[4] YANG R T, YU H Y, SONG M L, et al. Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method[J]. Cellulose, 2016,23(3):1871-1884.
[5] 许淑燕, 张培培, 熊杰. 氧化锌纳米纤维的制备及其光催化性能[J]. 纺织学报, 2011,32(3):15-20.
XU Shuyan, ZHNG Peipei, XIONG Jie. Preparation and photocatalytic activity of zinc oxide nanofibers[J]. Journal of Textile Research, 2011,32(3):15-20.
[6] HASSAN J J, HASSAN Z, ABU-HASSAN H. High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVA complex seed layer on Si substrates[J]. Journal of Alloys and Compounds, 2011,509(23):6711-6719.
[7] YU H Y, CHEN G Y, WANG Y B, et al. A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity[J]. Cellulose, 2015,22(1):261-273.
[8] LEE J M, PYUN Y B, YI J, et al. ZnO nanorod-graphene hybrid architectures for multifunctional conductors[J]. The Journal of Physical Chemistry C, 2009,113(44):19134-19138.
[9] 赵殿栋. 负载纳米ZnO非织造材料的制备和性能研究[D]. 无锡:江南大学, 2010: 3-4.
ZHAO Diandong. Preparation and properties of nonwovens loaded with nano-ZnO[D]. Wuxi: Jiangnan University, 2010: 3-4.
[10] 蓝杰蕊, 沈锦玉, 李玖明, 等. 紫外光固化技术对聚丙烯非织造布的亲水改性[J]. 纺织学报, 2017,38(5):98-103.
LAN Jierui, SHEN Jinyu, LI Jiuming, et al. Hydrophilic modification of polypropylene nonwoven fabric by UV curing technology[J]. Journal of Textile Research, 2017,38(5):98-103.
[11] FUJISHIMA A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
pmid: 12635268
[12] 施秋萍. 纳米氧化锌晶体在棉纤维表面的在位生长及其影响因素的探讨[D]. 上海:东华大学, 2007: 9-10.
SHI Qiuping. Study on in-situ growth of nanocrystal ZnO on cotton fabric surface and its influencing factors[D]. Shanghai: Donghua University, 2007: 9-10.
[13] MANEKKATHODI A, LU M Y, WANG C W, et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics[J]. Advanced Materials, 2010,22(36):4059-4063.
pmid: 20512820
[14] 肖文昌. β晶型聚丙烯的结晶行为及结晶动力学[D]. 上海:复旦大学, 2009: 24-25.
XIAO Wenchang. Crystallization behavior and crystallization kinetics of β-polypropylene[D]. Shanghai: Fudan University, 2009: 24-25.
[15] XU S, FU L, PHAM T S H, et al. Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight[J]. Ceramics International, 2015,41(3):4007-4013.
[16] PATTERSON A L, The Scherrer formula for X-Ray particle size determination[J]. Phys Rev, 1939,56(10):978-982.
[17] RUSDI R, RAHMAN A A, MOHAMED N S, et al. Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures[J]. Powder Technology, 2011,210(1):18-22.
[18] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi: B, 1966,15(2):627-637.
[1] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[2] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[3] 李静静 卢辉 蒋洁 张思航 顾迎春 陈胜. 高压电性静电纺柔性氧化锌/聚偏氟乙烯复合纤维膜[J]. 纺织学报, 2018, 39(02): 1-6.
[4] 张德锁 廖艳芬 林红 陈宇岳. 一步法原位生成纳米Ag-ZnO复合整理棉织物[J]. 纺织学报, 2014, 35(3): 92-0.
[5] 刘玉强 陈楠楠 吕红 田保中. 纳米氧化锌-氧化铁混合溶胶对涤纶织物的抗静电效果[J]. 纺织学报, 2013, 34(4): 85-88.
[6] 周兆懿;赵亚萍;葛凤燕;蔡再生. 基于低温水浴法的涤纶表面氧化锌纳米棒生长[J]. 纺织学报, 2010, 31(7): 6-10.
[7] 苏艳孟;郑敏. nano-super(AB)微晶分散体对桑蚕丝防紫外线及抗菌性能的影响[J]. 纺织学报, 2010, 31(5): 91-96.
[8] 关芳兰. 纳米氧化锌功能纺织品的制备及其稳定性[J]. 纺织学报, 2009, 30(01): 64-67.
[9] 张海波;秦刚;吴承训. 渗入氧化锌晶须的聚丙烯腈纤维的抗静电性[J]. 纺织学报, 2007, 28(2): 11-13.
[10] 王浩;林红;黄晨;陈宇岳. 纳米ZnO分散液的制备及其在棉织物上的应用[J]. 纺织学报, 2006, 27(9): 40-42.
[11] 黄晨;王浩;方丽娜;王红;张慧娟. 纳米氧化锌和壳聚糖对棉织物的复合整理[J]. 纺织学报, 2006, 27(5): 41-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!