纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 1-6.doi: 10.13475/j.fzxb.20180708806

• 纤维材料 •    下一篇

聚丙烯腈基活性中空碳纳米纤维制备及其性能

李树锋1,2(), 程博闻1,2, 罗永莎2, 王辉2, 徐经伟2   

  1. 1.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2018-07-30 修回日期:2019-06-06 出版日期:2019-10-15 发布日期:2019-10-23
  • 作者简介:李树锋(1977—),女,副教授,博士。主要研究方向为碳纳米纤维的制备。E-mail: lishufeng@tjpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51603144);国家科技支撑计划项目(2015BAE01B03);天津市高校学校科技发展基金计划项目(20140304)

Preparation and properties of polyacrylonitrile-based activated hollow carbon nanofibers

LI Shufeng1,2(), CHENG Bowen1,2, LUO Yongsha2, WANG Hui2, XU Jingwei2   

  1. 1. Key Laboratory of Advanced Textile Composites of Ministry of Education, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2018-07-30 Revised:2019-06-06 Online:2019-10-15 Published:2019-10-23

摘要:

为制备具有较高孔隙率的聚丙烯腈(PAN)活性中空碳纳米纤维(AHCNF),以自行制备的PAN为原料,经同轴静电纺丝、预氧化、炭化、活化后制备得到AHCNF,借助X射线光电子能谱仪、扫描电子显微镜、比表面积测试仪研究了致孔剂对其形态与孔结构的影响。结果表明:制备的PAN共聚物环化温度较低,环化放热较缓和,有利于预氧化的进行;炭化过程将PAN表面的碳氧单键转化为碳氧双键,而活化过程将碳氧双键进一步转化为酯基;添加致孔剂和未添加致孔剂得到的PAN活性中空碳纳米纤维横截面呈明显的中空结构,纤维壁较为致密;添加致孔剂后,活性中空碳纳米纤维的总比表面积从55.719 m2/g增加到532.639 m2/g,孔容从0.070 cm3/g增加到0.312 cm3/g,介孔平均孔径从3.408 nm增加到4.309 nm,收率从27.14%降低到9.44%。

关键词: 聚丙烯腈, 活性碳纤维, 中空碳纳米纤维, 同轴静电纺丝, 多孔碳纤维

Abstract:

In order to prepare polyacrylonitrile (PAN) activated hollow carbon nanofibers (AHCNF) with higher porosity, the self-prepared PAN copolymers were coaxially electrospun, pre-oxidized, carbonized and activated to prepare AHCNF. The influences of the pore-forming agents on the morphology and porosity were further investigated. The results show that the prepared PAN copolymers has a lower cyclization temperature and less heat release during cyclization, facilitating the pre-oxidation. The carbonization process converses the C—O bond on the PAN surface into the C=O double band, and the activation process converts the C=O double bond into an ester group. The activated hollow carbon nanofibers prepared by adding the pore-forming agent and by adding no pore-forming agent have cross sections with an obvious hollow structure and compact fiber walls. For the activated porous hollow carbon nanofibers (p-AHCNF) prepared by adding the pore-forming agents, the BET total specific surface area increases from 55.719 m2/g to 532.639 m2/g, the pore volume increases from 0.070 cm3/g to 0.312 cm3/g, the average mesopore diameter increases from 3.408 nm to 4.309 nm, and the yields decreases from 27.14% to 9.44%.

Key words: polyacrylonitrile, activated fiber, hollow carbon nanofiber, coaxial electrospinning, porous carbon nanofiber

中图分类号: 

  • TS343

图1

PAN共聚物的DSC曲线"

图2

不同PAN中空碳纳米纤维的表面和横截面扫描电镜照片"

图3

AHCNF与p-AHCNF的比表面积与介孔孔径分布曲线"

表1

PAN活性中空碳纳米纤维制备中各中间样品的元素成分占比"

样品名称 C含量 O含量 N含量
预氧丝 36.35 61.85 1.80
炭化丝 72.83 27.17
活化丝 88.16 10.58 1.26

表2

不同样品的XPS分峰拟合结果"

名称 官能团 预氧丝 炭化丝 活化丝
峰值/
eV
半峰
宽/eV
含量/
%
峰值/
eV
半峰宽/
eV
含量/
%
峰值/
eV
半峰
宽/eV
含量/
%
碳碳单键 284.96 1.49 60.51 284.64 1.20 39.87 284.56 0.957 54.46
碳氧单键 286.49 1.57 23.30 285.54 1.99 49.54 285.40 2.19 36.68
碳氧双键 287.80 1.36 1.30 287.80 3.16 10.59 287.80 1.09 0.41
酯基 288.94 1.17 14.89 288.90 2.00 0.00 288.90 4.18 8.45

表3

不同热处理后的PAN纳米纤维收率"

样品 AHCNF p-AHCNF
质量/g 收率*/% 质量/g 收率*/%
原丝 4.320 0 9.205 8
预氧丝 3.970 0 91.90 2.974 8 32.31
炭化丝 1.373 6 31.80 1.121 5 12.18
活化丝 1.172 8 27.14 0.869 2 9.44
[1] PATIL S A, CHIGOME S, HÄGERHÄLL C, et al. Electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis[J]. Bioresource Technology, 2013,132(3):121-126.
doi: 10.1016/j.biortech.2012.12.180
[2] LIU H, BAI J, WANG S, et al. The preparation of silver nanoparticles/carbon nanofibers as catalyst in the styrene epoxidation[J]. Colloids and Surfaces A: Physicochemical & Engineering Aspects, 2014,448(1):154-159.
[3] SINGH S, ASHFAQ M, SINGH R K, et al. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antbacterial applictions[J]. New Biotechnology, 2013,30(6):656-665.
doi: 10.1016/j.nbt.2013.05.002 pmid: 23692978
[4] TENG M, QIAO J L, LI F T, et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules[J]. Carbon, 2012,50(8):2877-2886.
doi: 10.1016/j.carbon.2012.02.056
[5] FENG C, KHULBE K C, MATSUURA T, et al. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment[J]. Separation and Purification Technology, 2013,102:118-135.
doi: 10.1016/j.seppur.2012.09.037
[6] PARK S H, JUNG H R, LEE W J. Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells[J]. Electrochimica Acta, 2013,102(21):423-428.
doi: 10.1016/j.electacta.2013.04.044
[7] AN G H, AHN H J. Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors[J]. Carbon, 2013,65(6):87-96.
doi: 10.1016/j.carbon.2013.08.002
[8] HSU Y H, LAI C C, HO C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochimica Acta, 2014,127:369-376.
doi: 10.1016/j.electacta.2014.02.060
[9] GU S Y, REN J, VANCSO G J. Process optimization and empirical modeling for electrospun polyacrylonit-rile (PAN) nanofiber precursor of carbon nano-fibers[J]. European Polymer Journal, 2005,41(11):2559-2568.
doi: 10.1016/j.eurpolymj.2005.05.008
[10] NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers:a state-of-the-art review[J]. Progress in Polymer Science, 2012,37(3):487-513.
doi: 10.1016/j.progpolymsci.2011.07.001
[11] 谢应波, 张维燕, 张睿, 等. KOH与NaOH活化法所制活性炭孔结构及电化学性能的比较[J]. 炭素技术, 2008,27(2):9-14.
XIE Yingbo, ZHANG Weiyan, ZHANG Rui, et al. Comparisons of pore structure and electrochemical performances of carbons activated by KOH and NaOH[J]. Carbon Techniques, 2008,27(2):9-14.
[12] 吴丹, 汤营茂, 缪清清, 等. 电纺聚丙烯腈基活性碳纳米纤维及其亚甲基蓝吸附性能[J]. 福建师范大学学报(自然科学版), 2015,31(3):50-58.
WU Dan, TANG Yingmao, MIAO Qingqing, et al. Adsorption properties of methylene blue onto the electrospun PAN-based activated carbon nanofibers[J]. Journal of Fujian Normal University (Natural Science Edition), 2015,31(3):50-58.
[13] 海滇, 李树锋, 丁晓, 等. 高分子量聚丙烯腈基碳纳米纤维的制备[J]. 纺织学报, 2016,37(3):1-5.
HAI Dian, LI Shufeng, DING Xiao, et al. Preparation of carbon nanofiers from PAN with high molecular weight[J]. Journal of Textile Research, 2016,37(3):1-5.
doi: 10.1177/004051756703700101
[14] 李树锋, 刘高华, 谢小军, 等. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017,38(12):1-6.
LI Shufeng, LIU Gaohua, XIE Xiaojun, et al. Effects of coaxial electrospnning parameters on morphology and carbonization yield of polyacrylonitrile hollow carbon nanofibers[J]. Journal of Textile Research, 2017,38(12):1-6.
doi: 10.1177/004051756803800101
[15] 李树锋. 碳中空纤维微孔膜的制备[D]. 天津:天津工业大学, 2000: 50.
LI Shufeng. Preparation of the carbon hollow fiber micro-membranes[D]. Tianjin: Tianjin Polytechnic Universitiy, 2000: 50.
[16] 李左江, 贺福, 王茂章. PAN基ACF表面结构的XPS研究[J]. 炭素, 1996(1):13-17.
LI Zuojiang, HE Fu, WANG Maozhang. XPS study of the PAN-based activated carbon fibers[J]. Carbon, 1996(1):13-17.
[1] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分析[J]. 纺织学报, 2020, 41(10): 29-33.
[2] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[3] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[4] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[5] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[6] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[7] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[8] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[9] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[10] 李国庆, 李平平, 刘瀚霖, 李妮. 聚丙烯腈/ 聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(03): 20-25.
[11] 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25.
[12] 李甫, 刘淑强, 费鹏飞, 张曼, 吴改红. 聚丙烯腈纤维差别化及其在环境净化中的应用进展[J]. 纺织学报, 2020, 41(02): 155-164.
[13] 王杰, 汪滨, 杜宗玺, 李从举, 李秀艳, 安泊儒. 磺胺化聚丙烯腈纳米纤维膜的制备及其对Cr( VI) 和Pb( II) 的吸附性能[J]. 纺织学报, 2020, 41(01): 1-7.
[14] 张泽, 徐卫军, 康宏亮, 徐坚, 刘瑞刚. 高性能聚丙烯腈基碳纤维制备技术几点思考[J]. 纺织学报, 2019, 40(12): 152-161.
[15] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!