纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 113-119.doi: 10.13475/j.fzxb.20180908207

• 染整与化学品 • 上一篇    下一篇

高导电性聚吡咯涂层织物的制备

何青青1,2, 徐红1,2(), 毛志平1,3, 张琳萍1,2, 钟毅1,2, 吕景春1,2   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学化工与生物工程学院,上海 201620
    3.东华大学 纺织科技创新中心 上海 201620
  • 收稿日期:2018-09-30 修回日期:2019-06-30 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 徐红
  • 作者简介:何青青(1993—),女,硕士生。主要研究方向为纺织品的功能整理。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309700);国家自然科学基金面上项目(21872025)

Preparation of high-electrical conductivity polypyrrole-coated fabrics

HE Qingqing1,2, XU Hong1,2(), MAO Zhiping1,3, ZHANG Linping1,2, ZHONG Yi1,2, LÜ Jingchun1,2   

  1. 1. Key Laboratory of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
    3. Innovation Center for Textile Science and Technology,Donghua University, Shanghai 201620, China
  • Received:2018-09-30 Revised:2019-06-30 Online:2019-10-15 Published:2019-10-23
  • Contact: XU Hong

摘要:

为将聚吡咯导电材料应用于纺织领域,开发具有优良导电性及导电稳定性的功能性纺织面料,利用氢氧化钠/尿素体系对棉针织物表面进行改性,通过原位聚合的方法将聚吡咯沉积于改性的棉针织物表面制备导电织物,探讨了吡咯单体浓度、氧化剂用量、掺杂剂浓度、掺杂剂种类、反应温度和时间等参数对织物导电性的影响。将织物在空气、水中的导电稳定性进行对比,筛选出合适的掺杂剂。结果表明:5-磺基水杨酸钠(浓度0.015 mol/L)为掺杂剂,吡咯浓度为0.3 mol/L,氯化铁浓度为0.4 mol/L,在0 ℃下聚合反应4 h时,聚吡咯涂层后棉织物的表面方阻可降为1.4 Ω/□,而且涂层织物在空气中的导电稳定性好于其在水中的稳定性。

关键词: 功能纺织品, 棉针织物, 聚吡咯, 导电性, 原位聚合, 掺杂剂

Abstract:

In order to apply polypyrrole conductive materials in the textiles field, functional textile fabrics with excellent electrical conductivity and electrical stability were developed. The surface of cotton knitted fabric was modified by NaOH/urea system. Polypyrrole was deposited on the surface of the modified cotton knitted fabric by in-situ polymerization to prepare conductive fabrics. The influences of parameters such as concentration of pyrrole monomer, oxidant dosage, dopant concentration, dopant type, reaction temperature and reaction time on the electrical conductivity of fabrics were discussed. The suitable dopant was selected by comparing the electrical stability of fabric in air and water. The results show that the optimal process parameters are sodium 5-sulfosalicylate (with the concentration of 0.015 mol/L) as the dopant, the concentration of pyrrole of 0.3 mol/L, and the concentration of ferric chloride of 0.4 mol/L. When the polymerization reaction is carried out at 0 ℃ for 4 h, the surface sheet resistance of cotton knitted fabric after polypyrrole coating decreases to 1.4 Ω/□, and the electrical stability of the coated fabric in air is better than that in water.

Key words: functinal textile, cotton knitted fabric, polypyrrole, electrical conductivity, in-situ polymerization, dopants

中图分类号: 

  • TS195.5

图1

吡咯单体浓度对改性织物表面方阻和质量增加率的影响"

图2

FeCl3浓度对改性织物表面方阻和质量增加率的影响"

图3

不同掺杂剂对改性织物的表面方阻和质量增加率的影响"

图4

5-磺基水杨酸钠浓度对改性织物表面方阻和质量增加率的影响"

图5

SSANa与Fe3+的络合反应"

图6

反应温度对改性织物表面方阻和质量增加率的影响"

图7

反应时间对改性织物表面方阻和质量增加率的影响"

图8

样品的红外光谱图"

图9

掺杂后的织物X射线电子能谱图"

表1

掺杂后导电织物上S、Cl、N元素的原子含量"

类别 S2p含
量/%
Cl2p含
量/%
N1s含
量/%
S与N
含量比
Cl与N
含量比
S与Cl
之和与
N含量比
SSANa 1.71 1.56 11.28 0.15 0.14 0.29
PTS 1.48 1.66 11.06 0.13 0.15 0.28
AQSANa 2.48 1.02 11.12 0.22 0.09 0.31
Cl- 0.08 2.35 13.58 0.01 0.17 0.18

图10

不同的掺杂剂对织物导电稳定性的影响"

图11

掺杂剂对织物润湿性能的影响"

[1] IROH J O, WILLIAMS C. Formation of thermally stable polypyrrole-naphthalene benzene sulfonate carbon fiber composites by an electrochemical process[J]. Synthetic Metals, 1999,99(1):1-8.
[2] 王利君, 毛鹏丽. 防电磁辐射聚吡咯/棉织物的制备及其性能[J]. 纺织学报, 2018,39(9):95-101.
WANG Lijun, MAO Pengli. Preparation and properties of anti-electromagnetic radiation polypyrrole/cotton fabrics[J]. Journal of Textile Research, 2018,39(9):95-101.
[3] 鞠佳彤, 田琳, 陈莹, 等. 聚吡咯涤纶导电织物的制备及其表征[J]. 纺织学报, 2013,34(11):28-33.
JU Jiatong, TIAN Lin, CHEN Ying, et al. Preparation and characterization of polypyrrole polyester conductive fabrics[J]. Journal of Textile Research, 2013,34(11):28-33.
[4] VARESANO A, BELLUATI A. A systematic study on the effects of doping agents on polypyrrole coating of fabrics[J]. Journal of Applied Polymer Science, 2015,133(1):43-46.
[5] ROMERO I S, KOTLIK M Z, MURPHY A R, et al. Enhancing the interface in silk-polypyrrole composites through chemical modification of silk fibroin[J]. ACS Appl Mater Interfaces, 2013,5(3):553-564.
doi: 10.1021/am301844c pmid: 23320759
[6] HE Qingqing, LV Jingchun, XU Hong, et al. Enhancing electrical conductivity and electrical stability of polypyrrole-coated cotton fabrics via surface microdissolution[J]. Journal of Applied Polymer Science, 2019,136(21):1-10.
[7] 董猛. 聚吡咯/金属复合涤纶织物的开发及其性能研究[D]. 天津: 天津工业大学, 2016: 19-22.
DONG Meng. Development and performance of polypyrrole/metal compposite polyester fabrics[D]. Tianjin: Tianjin Ploytechic University, 2016: 19-22.
[8] 霍歆彤, 刘玉, 李青. 聚吡咯/涤纶复合导电织物制备工艺探索[J]. 北京服装学院学报(自然科学版), 2015,35(2):12-15.
HUO Xintong, LIU Yu, LI Qing. Exploration of preparation process of polypyrrole/polyester composite conductive fabric[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2015,35(2):12-15.
[9] LE T H, KIM Y, YOON H, et al. Electrical and electrochemical properties of conducting polymers[J]. Polymers, 2017,9(12):30-34.
doi: 10.3390/polym9010030
[10] CARRILLO I, ENCISO E. Influence of dopant anions on properties of polypyrrolenanocoated poly(styrene-co-methacrylic acid) particles[J]. Synthetic Metals, 2012,162(1/2):136-142.
doi: 10.1016/j.synthmet.2011.11.023
[11] XU J, WANG D, XU W. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application[J]. Organic Electronic, 2015,24:153-159.
doi: 10.1016/j.orgel.2015.05.037
[12] ZHAO H, HOU L, LU Y. Enhanced x-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings[J]. ACS Appl Mater Interfaces, 2017,38(9):33059-33070.
[13] 谢雨辰, 秦宗益, 李俊. 聚吡咯纤维素纳米晶复合导电材料的制备及其性能表征[J]. 纺织学报, 2013,34(10):15-18.
XIE Yuchen, QIN Zongyi, LI Jun. Preparation and characterization of polypyrrole cellulose nanocrystalline composite conductive materials[J]. Journal of Textile Research, 2013,34(10):15-18.
[14] DAUGINET-DE PRA L. Investigation of the electronic structure and spectroelectrochemical properties of conductive polymer nanotube arrays[J]. Polymer, 2005,46(5):1583-1594.
[15] 李永霞, 周蓉, 陈莹, 等. 聚吡咯/涤纶单丝的制备及其性能[J]. 纺织学报, 2014,35(1):6-11.
LI Yongxia, ZHOU Rong, CHEN Ying, et al. Preparation and properties of polypyrrole/polyester monofilament[J]. Journal of Textile Research, 2014,35(1):6-11.
[16] GUIMARD N K, SCHMIDT C E. Conducting polymers in biomedical engineering[J]. Progress in Polymer Science, 2007,32(8/9):876-921.
[1] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[2] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[3] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/ 棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[4] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[5] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/ 聚苯胺/ 聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[6] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[7] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平针棉针织物平幅丝光条件与其线圈结构的关系[J]. 纺织学报, 2020, 41(04): 98-105.
[8] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[9] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
[10] 常硕, 沈加加. 纺织品的石墨烯耐久功能整理研究进展[J]. 纺织学报, 2020, 41(02): 179-186.
[11] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[12] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[13] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[14] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[15] 尉腾祥, 李敏, 彭虹云, 付少海. 纬平棉针织物双向拉伸线圈形态分析[J]. 纺织学报, 2019, 40(11): 64-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!