纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 13-19.doi: 10.13475/j.fzxb.20181000607

• 纤维材料 • 上一篇    下一篇

共聚型磷系阻燃聚酯聚合反应动力学及其性能

陈咏1, 王颖1, 何峰1, 王静1, 朱志国1(), 董振峰1, 王锐1,2   

  1. 1.北京服装学院 材料科学与工程学院, 北京 100029
    2.服装材料研究开发与评价北京市重点实验室, 北京 100029
  • 收稿日期:2018-10-09 修回日期:2019-07-05 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 朱志国
  • 作者简介:陈咏(1992—),男,硕士生。研究方向为聚酯的柔性聚合改性动力学及模型的建立。
  • 基金资助:
    国家重点研发计划专项资助(2016YFB0302701)

Kinetics and properties of phosphorus flame retardant copolymerized polyester

CHEN Yong1, WANG Ying1, HE Feng1, WANG Jing1, ZHU Zhiguo1(), DONG Zhenfeng1, WANG Rui1,2   

  1. 1. School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing 100029, China;
  • Received:2018-10-09 Revised:2019-07-05 Online:2019-10-15 Published:2019-10-23
  • Contact: ZHU Zhiguo

摘要:

为探究共聚型磷系阻燃聚酯的反应规律及其影响因素,以2-羧乙基苯基次磷酸(CEPPA)为阻燃剂制备不同磷含量的阻燃共聚酯,建立了聚酯反应动力学模型并分析其影响因素。借助红外光谱仪、差示扫描量热仪、热失重测试仪、极限氧指数仪、锥形量热仪对聚酯的结构及性能进行测试与分析。结果表明:随着CEPPA质量分数的增加,缩聚反应活化能逐渐增大,最高增加至106.83 kJ/mol;聚合物的玻璃化转变温度、熔点均呈下降趋势;阻燃剂中磷元素以共价键形式共聚到PET分子链中,抑制了分子链的结晶;当磷含量为1%时,阻燃共聚酯的极限氧指数达到31%,引燃时间明显延长,最大热释放速率降低了24%,阻燃效果显著。

关键词: 聚酯, 缩聚反应动力学模型, 阻燃剂, 磷系阻燃聚酯

Abstract:

In order to investigate the reaction law and influencing factors of copolymerized phosphorus-based flame retardant polyesters(PET), flame retardant co-PETs was prepared by using 2-carboxyethyl phenyl phosphinic acid (CEPPA) as a co-monomer flame retardant. The kinetic model of the polycondensation reaction of PET and flame retardant co-PETs were established, and the trend and reasons of the kinetic model were analyzed. The structure and properties of polymer were characterized by infrared spectroscopy, differential scanning calorimetry, thermogravimetry, limiting oxygen index and cone calorimetry. The results show that with the increase of the mass fraction of CEPPA, the actiration energy of reaction increases to 106.83 kJ/mol. The glass transition temperature and melting point decreases with the increase of the flame retardant because the group structure of CEPPA is polymerized into the macromolecular chain, which inhibits the crystallization of the PET. PET with the phosphorus content of 1% can achieve the optimal flame retardancy, limit oxygen index can be up to 31%, the ignition time is prolonged obviously, and the peak heat release rate decreases by 24%.

Key words: polyester, kinetics model of polycondensation, flame retardant, phosphorus-containing flame retardant polyester

中图分类号: 

  • TQ311

图1

不同磷添加量的阻燃PET的相对分子质量随时间的变化"

表1

不同磷添加量PET体系的线性回归方程"

磷质量
分数/%
聚合温
度/℃
回归方程 R2
0.0 275 Mt=203.18t+746.5 0.99
280 Mt=230.90t+1 598.0 0.99
285 Mt=252.49t+1 485.0 0.99
0.6 275 Mt=179.70t+1 411.6 0.97
280 Mt=206.85t+1 178.1 0.97
285 Mt=235.75t+2 376.8 0.96
0.8 275 Mt=157.17t+816.2 0.98
280 Mt=199.14t+366.8 0.96
285 Mt=229.54t+1 501.1 0.97
1.0 275 Mt=138.86t+254.6 0.98
280 Mt=185.91t+691.6 0.98
285 Mt=211.23t+693.3 0.98

表2

聚合温度对不同体系表观反应速率常数的影响"

磷质量分
数/%
K/(g·(mol·min)-1)
275 ℃ 280 ℃ 285 ℃
0.0 203.18 230.90 252.49
0.6 179.70 206.85 235.75
0.8 157.17 199.14 229.54
1.0 138.86 185.91 211.23

表3

不同聚合体系的活化能和指前因子结果"

磷质量分
数/%
lnKT-1方程 Ea/
(kJ·mol-1)
A0/
(g·(mol·min)-1)
0.0 lnK=-6 651T-1 + 17.45 55.30 3.80×107
0.6 lnK=-8 307T-1 + 20.35 69.06 6.86×108
0.8 lnK=-11 596T-1 + 26.23 96.41 2.46×1011
1.0 lnK=-12 849T-1 + 28.40 106.83 2.16×1012

图2

PET与阻燃PET的红外光谱图"

图3

PET与阻燃PET的DSC谱图"

表4

PET及阻燃PET的TGA数据"

样品
编号
初始分解
温度/℃
最大分解速
率温度/℃
最终残
碳量/%
1# 397.7 431.6 22.5
2# 396.0 429.9 21.0
3# 395.0 428.8 20.7
4# 389.9 430.7 21.2
5# 387.3 430.9 17.8
6# 387.1 432.1 16.6
7# 390.0 429.9 22.3
8# 389.2 430.1 23.9
9# 382.9 429.7 17.4
10# 384.1 430.9 19.3
11# 383.7 429.6 18.5
12# 382.8 428.7 18.7

图4

样品的锥形量热测试曲线"

[1] 王新良. 阻燃聚酯现状及发展趋势[J]. 聚酯工业, 2012,25(5):5-7.
WANG Xinliang. Current status and development trends of flame-retardant polyester[J]. Polyester Industry, 2012,25(5):5-7.
[2] 李建武, 王朝生, 江振林, 等. 含磷阻燃剂结构对阻燃共聚酯结构与性能的影响[J]. 合成纤维工业, 2017,40(3):6-10.
LI Jianwu, WANG Chaosheng, JIANG Zhenlin, et al. Structure and properties of flame retardant copolyester dependent on phosphorous flame retardant structure[J]. China Synthetic Fiber Industry, 2017,40(3):6-10.
[3] 闫梦祥, 张思源, 王总帅, 等. 磷系阻燃剂阻燃PET的研究进展[J]. 中国塑料, 2017,31(10):1-5.
YAN Mengxiang, ZHANG Siyuan, WANG Zongshuai, et al. Research progress in phosphorus flame retardants for polyesters[J]. China Plastics, 2017,31(10):1-5.
[4] 黄基锐, 沙建昂, 龚静华, 等. 高磷含量阻燃聚酯及其与聚对苯二甲酸乙二醇酯共混物的制备研究[J]. 化工新材料, 2017,45(12):122-125.
HUANG Jirui, SHA Jian'ang, GONG Jinghua, et al. Preparation of flame retardant polyester with hige phosphorus content and its blend with PET[J]. New Chemical Meterials, 2017,45(12):122-125.
[5] 韩永刚. 磷系阻燃聚酯的制备及性能研究[D]. 长春:长春工业大学, 2017: 25-43.
HAN Yonggang. Study on the preparation and properties of phosphorus-containing flame retardant polyester[D]. Changchun: Changchun University of Technology, 2017: 25-43.
[6] 孙晓凯. 含磷阻燃聚酯纳米复合物的制备及其结构性能研究[D]. 北京:北京服装学院, 2009: 25-40.
SUN Xiaokai. Studies on synthesis of flame-retardant ploy(ethylene terephthalate)/nanocomposites and its properties[D]. Beijing: Beijing Institute of Fashion Technology, 2009: 25-40.
[7] 王国德, 王红, 赵清刚. 阻燃剂2-羧乙基苯磷酸在阻燃聚酯中的应用[J]. 聚酯工业, 2002,15(4):18-19.
WANG Guode, WANG Hong, ZHAO Qingang. Application of 2-carboxyethyl (phenyl)phosphinic acid as phosphorus- containing flame-retardant on PET[J]. Polyester Industry, 2002,15(4):18-19.
[8] 冯新星, 张建春, 张华, 等. 含磷阻燃共聚聚酯的制备及性能[N]. 中国纺织报, 2013-09-02(4).
FENG Xinxing, ZHANG Jianchun, ZHANG Hua, et al. Preparation and properties of phosphorus-containing flame retardant copolyester[N]. China Textile News, 2013-09-02(4).
[9] 姬洪. 阻燃涤纶的制备、结构与性能研究[D]. 杭州:浙江理工大学, 2012: 5-43.
JI Hong. Preparation, structure and properties of flame-retardant polyester fiber[D]. Hangzhou: Zhejiang Sci-Tech University, 2012: 5-43.
[10] 张宁. 功能性聚酯的制备与性能[D]. 武汉:武汉工程大学, 2016: 13-47.
ZHANG Ning. Preparation and properties of functional polyester[D]. Wuhan:Wuhan Institute of Technology, 2016: 13-47.
[11] 陈克权, 周芬, 陈尚伟, 等. Ti/Si系催化剂催化聚酯缩聚反应动力学研究[J]. 聚酯工业, 2002,15(4):15-17.
CHEN Kequan, ZHOU Fen, CHEN Shangwei, et al. Study on the reaction kinetics of Ti/Si catalyst for PET polycondensation[J]. Polyester Industry, 2002,15(4):15-17.
[12] 李文艳, 顾雪萍, 王嘉骏, 等. 规模化聚对苯二甲酸乙二醇酯终缩聚的流程模拟[J]. 石油化工, 2011,40(10):1094-1099.
LI Wenyan, GU Xueping, WANG Jiajun, et al. Modeling of an industrial polycondensation process for polyethylene terephthalate[J]. Petrochemical Technology, 2011,40(10):1094-1099.
[13] 武荣瑞, 张天骄. 成纤聚合物的合成与改性[M]. 北京: 中国石化出版社, 2002: 75-93.
WU Rongrui, ZHANG Tianjiao. Synthesis and Modification of Fiber-forming Polymers[M]. Beijing: China Petrochemical Press, 2002: 75-93.
[14] 刘方, 刘亮, 李璐, 等. 对苯二甲酸与新戊二醇缩聚反应动力学研究[J]. 化学研究与应用, 2016,28(9):1320-1324.
LIU Fang, LIU Liang, LI Lu, et al. Kinetics of polycondensation interephthalic acid and neopentyl glycol reaction[J]. Chemical Research and Application, 2016,28(9):1320-1324.
[15] 缪飞. 磷硅阻燃剂的合成与表征及在环氧树脂中的应用[D]. 绵阳:西南科技大学, 2018: 3-16.
MIAO Fei. Synthesis and characterization of phosphorus-silicon flame retardant and its application in epoxy resin[D]. Mianyang: Southwest University of Science and Technology, 2018: 3-16.
[16] 江振林. 聚酯纤维及织物的阻燃与抗熔滴改性[D]. 上海:东华大学, 2018: 31-53.
JIANG Zhenlin. Flame retardant and anti-dropping modification of polyester fiber and fabric[D]. Shanghai:Donghua University, 2018: 31-53.
[1] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[2] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[3] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[4] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[5] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[6] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[7] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[8] 邢丹丹, 王妮, 刘虎易, 甘学辉, 施楣梧. 防透明聚酯和消光聚酰胺6 纤维中TiO2 微粒分布的表征方法[J]. 纺织学报, 2020, 41(02): 33-38.
[9] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/ 聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[10] 董奎勇, 杨婷婷, 王学利, 何勇, 俞建勇. 生物基聚酯与聚酰胺纤维的研发进展 [J]. 纺织学报, 2020, 41(01): 174-183.
[11] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
[12] 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38.
[13] 魏艳红, 刘新金, 谢春萍, 苏旭中, 张钟唏. 聚酯长丝/棉复合纱斜纹织物的保形性及服用性能[J]. 纺织学报, 2019, 40(12): 39-44.
[14] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019, 40(12): 79-85.
[15] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!