纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 141-146.doi: 10.13475/j.fzxb.20181103106

• 服装工程 • 上一篇    下一篇

空气层厚度对热防护面料蒸汽防护性能的影响

陈思1, 卢业虎1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    2.现代丝绸国家工程实验室(苏州), 江苏 苏州 215123
  • 收稿日期:2018-11-12 修回日期:2019-07-04 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 卢业虎
  • 作者简介:陈思(1995—),女,硕士生。主要研究方向为热防护服性能评价。
  • 基金资助:
    江苏省自然科学基金项目(BK20161255);江苏省研究生科研与实践创新计划项目(SJCX17_0651);苏州市重点产业技术创新项目(SYG201812)

Influence of air gap size on steam protective performance of fireproof fabric

CHEN Si1, LU Yehu1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2018-11-12 Revised:2019-07-04 Online:2019-10-15 Published:2019-10-23
  • Contact: LU Yehu

摘要:

为探索防护服装与人体皮肤之间的空气层厚度对其蒸汽防护性能的具体影响,选用3种不同热防护面料系统,设计4种不同的空气层厚度(0、6、12、18 mm),分析二级烧伤时间、三级烧伤时间、吸收总热量和热流量,评价面料系统的蒸汽防护性能。研究结果表明:不同的面料系统提供不同的防护性能,增加面料系统的厚度有利于提升其防护性能,防水透气膜越靠近蒸汽热源,系统的防护性能越好;防护服装的蒸汽防护性能与空气层厚度有着显著相关性,在空气层厚度增加到12 mm及以上时,防护服的蒸汽防护性能会得到显著提升;通过分析蒸汽暴露和冷却阶段传感器热流量变化曲线,可进一步分析了解蒸汽暴露环境下织物系统内的热湿传递机制。

关键词: 热防护服, 空气层, 蒸汽灾害, 防护性能, 总吸收能量

Abstract:

In order to investigate the influence of air gap between fabric layers and human skin on protective performance of protective clothing against steam, three different fabric systems were selected and four levels of air gap, i.e., 0 mm, 6 mm, 12 mm, and 18 mm, were designed. Time to 2nd and 3rd burn degree, total absorbed energy and heat flux were recorded and analyzed to evaluate the impact of air gap on the protective performance. The results show that thermal protection is different for different fabric assemblies. If the fabric thickness is bigger and moisture barrier is arranged more close to the steam hazard, the fabric system provides higher thermal protection. Further, a significant relationship exists between the thermal protection against steam and air gap size. If the air gap size is higher than 12 mm, thermal protective performance against steam exhibits a significant increase. The analysis of heat flux curve during exposure and cooling phase can facilitate the further understanding of the heat and moisture transfer mechanism.

Key words: thermal protective clothing, air gap, steam hazard, protective performance, total absorbed energy

中图分类号: 

  • TS941.73

表1

单层面料的基本性能"

面料编号 织物类型 纤维成分 组织结构 厚度/mm 面密度/
(g·m-2)
透气性/
(cm3·cm-2·s-1)
OS 外层 芳纶1313/芳纶1414(98/2) 斜纹 0.41 186.7 17.1
MB 防水膜 芳纶1313和聚四氟乙烯膜 水刺毡 0.69 106.7 0
CF 复合面料 芳纶1313/芳纶1414(98/2)和聚四氟乙烯膜 涂层 0.63 280.0 0
TL 隔热层 芳纶1313毡和基布 三维间隔 2.73 180.0 662.0

表2

面料系统的基本性能"

系统编号 系统组合 厚度/mm 面密度/(g·m-2)
S CF 0.63 280.0
D1 CF+TL 3.36 460.0
D2 OS+MB 1.13 293.3

图1

蒸汽防护测试仪"

表3

各面料系统不同空气层下的防护性能"

面料
系统
二级烧
伤时
间/s
方差/
s
三级烧
伤时
间/s
方差/
s
总吸收
能量/
(kJ·m-2)
能量
方差/
(kJ·m-2)
S 0.43 5.04 0.49 6.92 382.33 0.91
S+6 mm 0.26 5.50 0.22 7.56 356.40 9.33
S+12 mm 0.09 6.34 0.07 8.39 277.73 9.71
S+18 mm NB NB 146.65 0.07
显著性 ** ** **
D1 1.19 18.68 NB 202.73 4.66
D1+6 mm 0.60 19.30 NB 192.95 1.91
D1+12 mm 0.94 20.95 NB 180.17 2.70
D1+18 mm NB NB 111.10 2.18
显著性 ** NS **
D2 0.16 4.96 0.52 6.97 417.93 12.53
D2+6 mm 0.50 5.84 0.72 8.26 391.87 10.41
D2+12 mm 0.45 9.50 0.80 12.50 317.20 12.41
D2+18 mm 0.25 14.71 0.99 20.78 225.13 14.69
显著性 ** ** **

图2

空气层厚度对面料二级烧伤时间的影响"

图3

空气层厚度对总吸收热量的影响"

图4

不同空气层厚度时面料系统S的热流量曲线"

图5

不同空气层厚度时面料系统D1的热流量曲线"

图6

不同空气层厚度时面料系统D2的热流量曲线"

[1] MURTAZA G. Development of fabrics for steam and hot water protection[D]. Edmonton: University of Alberta, 2012: 2-6.
[2] MANDELCORN E, GOMEZ M, CARTOTTO R C. Work-related burn injuries in Ontario, Canada: has anything changed in the last 10 years?[J]. Burns, 2003,29(5):469-472.
doi: 10.1016/s0305-4179(03)00063-9 pmid: 12880727
[3] 刘洪凤, 张富丽. 蒸汽防护服装的性能要求及研究现状[J]. 上海纺织科技, 2012,40(5):14-16.
LIU Hongfeng, ZHANG Fuli. Performance requirements and its present research status of steam exposure suit[J]. Shanghai Textile Science & Technology, 2012,40(5):14-16.
[4] 陈思, 卢业虎, 戴晓群, 等. 高温液体及蒸汽防护服装防护性能研究进展[J]. 纺织学报, 2018,39(5):144-149.
CHEN Si, LU Yehu, DAI Xiaoqun, et al. Research progress of protection properties of protective clothing against steam and hot liquid spray[J]. Journal of Textile Research, 2018,39(5):144-149.
[5] DESRUELLE A V, SCHMID B, MONTMAYEUR A. Thermal protection against hot steam stress[J]. Blowing Hot and Cold: Protecting Against Climatic Extremes, 2002,109(5):1147-1156
[6] ACKERMAN M Y, CROWN E M, DALE J D, et al. Development of a test apparatus/method and material specifications for protection from steam under pressure[C] //SHEPHERD A. Performance of Protective Clothing and Equipment: 9th Volume, Emerging Issues and Technologies. California: ASTM, 2012: 303-328.
[7] SU Y, LI J. Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure[J]. Journal of Industrial Textiles, 2016. doi: 10.1177/1528083716674907.
[8] MANDAL S. Characterization of textile fabrics under various thermal exposure[J]. Textile Research Journal, 2013,83(10):1005-1019.
doi: 10.1177/0040517512461707
[9] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004,10(3):239-245.
pmid: 15377408
[10] SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety and Ergonomics, 2008,14(1):29-41.
doi: 10.1080/10803548.2008.11076748 pmid: 18394324
[11] DESRUELLE A, SCHMID B. The steam laboratory of the Institut de medecine navale du service de sante des arme es: a set of tools in the service of the French Navy[J]. European Journal of Applied Physiology, 2004,92(6):630-635.
doi: 10.1007/s00421-004-1123-4 pmid: 15205957
[12] 刘洪凤, 张富丽. 芳砜纶复合材料的蒸汽防护性能研究[J]. 上海纺织科技, 2012,40(12):29-31.
LIU Hongfeng, ZHANG Fuli. Steam protective property of PSA composites[J]. Shanghai Textile Science & Technology, 2012,40(12):29-31.
[13] 刘洪凤, 张富丽. 法国海军医学院的蒸汽防护实验室[J]. 中国个体防护装备, 2013(2):43-45.
LIU Hongfeng, ZHANG Fuli. The steam laboratory of the IMNSSA of the french navy[J]. China Personal Protective Equipment, 2013(2):43-45.
[14] SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fiber and Polymers, 2017,18(3):582-589.
doi: 10.1007/s12221-017-6714-x
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[3] 吕凯敏, 戴宏钦. 化学防护服的研究进展[J]. 纺织学报, 2020, 41(05): 191-196.
[4] 王雅娴, 李艳梅. 吸能缓冲防护服装的研究进展[J]. 纺织学报, 2020, 41(05): 184-190.
[5] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[6] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO / 有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
[7] 丁宁, 林洁. 非稳态自然对流换热系数计算方法及其在防护服隔热预报中的运用 [J]. 纺织学报, 2020, 41(01): 139-144.
[8] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[9] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[10] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[11] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[12] 张泓月, 李小辉. 热防护服用织物蜂窝夹芯结构的辐射热性能测评[J]. 纺织学报, 2019, 40(10): 147-151.
[13] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[14] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[15] 王敏, 李俊. 燃烧假人衣下空气层的三维现场扫描测量与表征[J]. 纺织学报, 2019, 40(01): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!