纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 33-41.doi: 10.13475/j.fzxb.20180905309
HAN Ye1, ZHANG Hui1(), ZHU Guoqing2, WU Hailiang1
摘要:
为提高涤纶的光催化性能,基于水热合成技术,采用硫酸钛、尿素和聚乙二醇在涤纶表面负载纳米TiO2颗粒,研究了TiO2改性涤纶紫外线辐照光催化降解亚甲基蓝染料的性能,并借助扫描电子显微镜、粒度分析仪、X射线衍射仪等仪器对改性涤纶光催化性能增强的原因进行分析。结果表明:聚乙二醇的质量浓度和相对分子质量会对水热条件下硫酸钛和尿素在涤纶表面生成的纳米TiO2颗粒大小和负载量产生影响;与未添加聚乙二醇相比,400添加聚乙二醇400浓度为12.5 mL/L时,涤纶纤维表面负载的纳米TiO2颗粒增加,且晶粒尺寸减小为9.4 nm,并且经紫外线辐照120 min后,TiO2改性涤纶降解亚甲基蓝染料总有机碳含量值由0.001 11%降至0.000 46%。
中图分类号:
[1] |
PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B: Environmental, 2012,125(33):331-349.
doi: 10.1016/j.apcatb.2012.05.036 |
[2] | NASIRIAN M, LIN Y P, BUSTILLO C F, et al. Enhan- cement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review[J]. International Journal of Environmental Science & Technology, 2018,15(9):2009-2032. |
[3] |
ESPINO-ESTEVEZ M R, FERNANDEZ-RODRIGU-EZ C, GONZALEZ-DIAZ O M, et al. Enhancement of stability and photoactivity of TiO2, coatings on annular glass reactors to remove emerging pollutants from waters[J]. Chemical Engineering Journal, 2015,279:488-497.
doi: 10.1016/j.cej.2015.05.038 |
[4] | YANG X L, ZHU L, YANG L M, et al. Preparation and photocatalytic activity of neodymium doping titania loaded to silicon dioxide[J]. Transactions of Nonferrous Metals Society of China, 2011,21(2):335-339. |
[5] |
KUWAHARA Y, YAMASHITA H. Efficient photo- catalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials[J]. Journal of Materials Chemistry, 2011,21(8):2407-2416.
doi: 10.1039/C0JM02741C |
[6] | TAHIR M, AMIN N A S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites[J]. Applied Catalysis B: Environmental, 2013,142(5):512-522. |
[7] |
PANT B, PANT H R, PARK M, et al. Electrospun CdS-TiO2 doped carbon nanofibers for visible-light-induced photocatalytic hydrolysis of ammonia borane[J]. Catalysis Communications, 2014,50(14):63-68.
doi: 10.1016/j.catcom.2014.03.002 |
[8] |
KIM C, LEE J, LEE S. TiO2 nanoparticle sorption to sand in the presence of natural organic matter[J]. Environmental Earth Sciences, 2015,73(9):5585-5591.
doi: 10.1007/s12665-014-3812-6 |
[9] |
BOSTJAN E, PETRA H, KATJA P, et al. Glass fiber-supported TiO2, photocatalyst: efficient mineralization and removal of toxicity/estrogenicity of bisphenol a and its analogs[J]. Applied Catalysis B: Environmental, 2016,183:149-158.
doi: 10.1016/j.apcatb.2015.10.033 |
[10] | YIN B, WANG J T, WEI X U, et al. Preparation of TiO2/mesoporous carbon composites and their photoca- talytic performance for methyl orange degradation[J]. Carbon, 2013,56(1):393-394. |
[11] | LI Y, GUO Y, LI S, et al. Efficient visible-light photo- catalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+: Y3Al5O12/Pt-TiO2)[J]. Intern- ational Journal of Hydrogen Energy, 2015,40(5):2132-2140. |
[12] | 杨璐, 张辉. 水热法制备纳米TiO2改性锦纶织物[J]. 纺织学报, 2011,32(11):83-89. |
YANG Lu, ZHANG Hui. Modification of polyamide fabric nano-TiO2 prepared by low temperature hydrothermal method[J]. Journal of Textile Research, 2011,32(11):83-89.
doi: 10.1177/004051756203200115 |
|
[13] | 冯静, 杜英英, 邢彦军. 钨杂二氧化钛负载棉织物的微波法制备及光催化性能[J]. 纺织学报, 2014,35(7):88-93. |
FENG Jing, DU Yingying, XING Yanjun. Microwave- assisted low temperature in-situ and coating of tungsten-doped TiO2 onto cotton fabric and photocatalytic performance coated fabric[J]. Journal of Textile Research, 2014,35(7):88-93.
doi: 10.1177/004051756503500114 |
|
[14] |
KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric[J]. Applied Surface Science, 2015,332:665-673.
doi: 10.1016/j.apsusc.2015.01.184 |
[15] |
PROROKOVA N P, KUMEEVA T Y, AGAFONOV A V, et al. Modification of polyester fabrics with nanosized titanium dioxide to impart photoactivity[J]. Inorganic Materials Applied Research, 2017,8(5):696-703.
doi: 10.1134/S2075113317050264 |
[16] |
MOMTAZER M, PAKDEL E, BEHZADNIA A. Novel feature of nano-titanium dioxide on textiles: antifelting and antibacterial wool[J]. Journal of Applied Polymer Science, 2011,121(6):3407-3413.
doi: 10.1002/app.33858 |
[17] | 郭晓玲, 张彤, 曹陈华, 等. 负载掺杂纳米TiO2耐久抗菌织物的制备与表征[J]. 纺织学报, 2017,38(6):163-168. |
GUO Xiaoling, ZHANG Tong, CAO Chenhua, et al. Preparation and characterization of durable antibacterial fabric loaded with doped nano-TiO2[J]. Journal of Textile Research, 2017,38(6):163-168. | |
[18] | 李瑞雪, 沈小林, 张兴亚, 等. 原位生成二氧化钛对棉纤维抗紫外线性能的影响[J]. 纺织学报, 2016,37(3):78-81. |
LI Ruixue, SHEN Xiaolin, ZHAG Xingya, et al. Study on anti-UV property of cotton fibers by in-situ generation of TiO2[J]. Journal of Textile Research, 2016,37(3):78-81. | |
[19] | 贾琳, 王西贤, 张海霞, 等. 聚丙烯腈/二氧化钛纳米纤维的紫外线防护性能[J]. 纺织学报, 2017,38(7):18-22. |
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Ultraviolet protective properties of prolyacylonitrile/TiO2 nanofiber[J]. Journal of Textile Research, 2017,38(7):18-22. | |
[20] |
MIRJALILI M, KARIMI L, BARARITARI A. Investi- gating the effect of corona treatment on self-cleaning property of finished cotton fabric with nano titanium dioxide[J]. Journal of the Textile Institute, 2015,106(6):621-628.
doi: 10.1080/00405000.2014.932058 |
[21] | 孟金凤, 孟家光, 张琳玫, 等. 毛涤西服面料的自清洁性能[J]. 纺织学报, 2015,36(10):107-112. |
MENG Jinfeng, MENG Jiaguang, ZHANG Linmei, et al. Nanometer self-cleaning properties of wool/polyester blended suit fabric[J]. Journal of Textile Research, 2015,36(10):107-112. | |
[22] | ZHANG H, LI F, ZHU H. Immobilization of TiO2nano- particles on PET fabric modified with silane; coupling agent by low temperature hydrothermal method[J]. Fibers & Polymers, 2013,14(1):43-51. |
[23] |
LUAN S, QU D, AN L, et al. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment[J]. Science Bulletin, 2018,63(11):683-690.
doi: 10.1016/j.scib.2018.04.002 |
[24] |
NEMATI S H, HADJIZADEH A. Gentamicineluting titanium dioxide nanotubes grown on the ultrafine- grained titanium[J]. Aaps Pharmscitech, 2017,18(6):1-8.
doi: 10.1208/s12249-016-0685-x |
[25] |
LEE M J, KIM J H, PARK Y T. Surface modification reaction of photocatalytic titanium dioxide with triethoxysilane for improving dispersibility[J]. Bulletin- Korean Chemical Society, 2010,31(5):1275-1279.
doi: 10.5012/bkcs.2010.31.5.1275 |
[26] | WU Z W, ZHANG L J, ZHAI X J, et al. Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant[J]. Nanomaterials and Nanotec- hnology, 2018(8):1-8. |
[27] | VOROKH A S. Scherrer formula: estimation of error in determining small nanoparticle size[J]. Nanosystems: Physics, Chemistry, Mathematics, 2018,9(3):364-369. |
[28] | YANG Y, ZHANG T, LING L, et al. Quick and facile preparation of visible light-driven TiO2 photocatalyst with high absorption and photocatalytic activity[J]. Scientific Reports, 2014,4(1):1-6. |
[29] | 吉强, 王晓, 戚俊然, 等. 光接枝丙烯酸棉纤维素基TiO2/C光催化剂的制备与光催化性[J]. 纺织学报, 2017,38(10):75-80. |
JI Qiang, WANG Xiao, QI Junran, et al. Preparation and photocatalysis of acrylic grafted cotton cellulose-based TiO2/C photocatalyst[J]. Journal of Textile Research, 2017,38(10):75-80. | |
[30] |
XIANG Q J, YU J G. Photocatalytic activity of hierarc- hical flower-like TiO2 superstructures with dominant {001} facets[J]. Chinese Journal of Catalysis, 2011,32(3/4):525-531.
doi: 10.1016/S1872-2067(10)60186-6 |
[31] |
RAHIM S, GHAMSARI M S, RADIMAN S. Surface modification of titanium oxide nanocrystals with PEG[J]. Scientia Iranica, 2012,19(3):948-953.
doi: 10.1016/j.scient.2012.03.009 |
[32] |
ZHOU C H, ZHAO X Z, YANG B C, et al. Effect of poly (ethylene glycol) on coarsening dynamics of titanium dioxide nanocrystallites in hydrothermal reaction and the application in dye sensitized solar cells[J]. Journal of Colloid & Interface Science, 2012,374(1):9-17.
pmid: 22405580 |
[33] |
WANG Y, ZHANG L, DENG K, et al. Low temperature synjournal and photocatalytic activity of rutile TiO2 nanorod superstructures[J]. Journal of Physical Chemistry C, 2007,111(6):2709-2714.
doi: 10.1021/jp066519k |
[34] | GROEN J C, PEFFER L A A, JAVIER P. Pore size determination in modified micro- and mesoporous materials. pitfalls and limitations in gas adsorption data analysis[J]. Microporous & Mesoporous Materials, 2003,60(1):1-17. |
[35] |
LI S, CHEN J, ZHENG F, et al. Synjournal of the double-shell anatase-rutile TiO2 hollow spheres with enhanced photocatalytic activity[J]. Nanoscale, 2013,5(24):12150-12155.
pmid: 24177374 |
[36] |
RODRIGUEZ J L, POZNYAK T, VALENZEUELA M A, et al. Surface interactions and mechanistic studies of 2,4-dichlorophenoxyacetic acid degradation by catalytic ozonation in presence of Ni/TiO2[J]. Chemical Engineering Journal, 2013,222(15):426-434.
doi: 10.1016/j.cej.2013.02.086 |
[37] |
NANAYAKKARA C E, JAYAWEERA P M, RUBASI- NGHEGE G, et al. Surface photochemistry of adsorbed nitrate: the role of adsorbed water in the formation of reduced nitrogen species on α-Fe2O3 particle surfaces[J]. Journal of Physical Chemistry A, 2014,118(1):158-166.
doi: 10.1021/jp409017m |
[38] |
LALITHA K, REDDY J K, KUMARI V D, et al. Conti- nuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol: water mixtures under solar irradiation: a structure-activity correlation[J]. International Journal of Hydrogen Energy, 2010,35(9):3991-4001.
doi: 10.1016/j.ijhydene.2010.01.106 |
[39] |
KUBALA-KUKUS A, BANAS D, STABRAWA I, et al. Analysis of Ti and TiO2 nanolayers by total reflection X-ray photoelectron spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018,145(1):43-50.
doi: 10.1016/j.sab.2018.03.012 |
[40] | XU H, SONG Z, WANG X, et al. Synjournal of well- dispersed TiO2 nanoparticles by a sol-hydrothermal method[J]. Asian Journal of Chemistry, 2011,23(5):2339-2342. |
[41] | YANG H, YANG Z J, HAN C, et al. Photocatalyic activity of Fe-doped diopside[J]. Transactions of Nanoferrous Metals Society of China, 2012,22(12):3053-3058. |
[42] | WANG B, DUAN Y, ZHANG J. Titanium dioxide nanoparticles-coated aramid fiber showing enhanced interfacial strength and UV resistance properties[J]. Materials & Design, 2016,103:330-338. |
[43] | CAO K C, ZOBERBIER T, BISKUPEK J, et al. Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts[J]. Nature Communications, 2018(9):1-10. |
[1] | 王秋萍, 张瑞萍, 李成红, 张葛成. 导电涤纶非织造布的制备及其性能[J]. 纺织学报, 2020, 41(10): 116-121. |
[2] | 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R 的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93. |
[3] | 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107. |
[4] | 潘璐, 程亭亭, 徐岚. 聚己内酯/ 聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[5] | 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P( St-NMA) 光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104. |
[6] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
[7] | 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111. |
[8] | 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117. |
[9] | 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105. |
[10] | 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/ 苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57. |
[11] | 王小艳, 杜金梅, 彭铃淇, 荆丽丽, 许长海. 涤纶针织物碱减量和染色一浴一步法工艺 [J]. 纺织学报, 2020, 41(01): 80-87. |
[12] | 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/ 涤纶刺绣心电电极制备及其性能 [J]. 纺织学报, 2020, 41(01): 56-62. |
[13] | 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97. |
[14] | 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92. |
[15] | 戴悦, 张瑞萍, 王秋萍, 胡亚楠, 张贤国. 柠檬酸/β-环糊精整理涤纶织物的消臭效果[J]. 纺织学报, 2019, 40(12): 104-108. |
|