纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 85-91.doi: 10.13475/j.fzxb.20180802007

• 纺织工程 • 上一篇    下一篇

二维三轴编织复合材料预压单胞模型建立及其弹性规律数值预测

张芳芳1, 段永川2()   

  1. 1.燕山大学 机械工程学院, 河北 秦皇岛 066004
    2.燕山大学 先进锻压成形技术与科学教育部重点实验室, 河北 秦皇岛 066004
  • 收稿日期:2018-08-06 修回日期:2019-07-15 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 段永川
  • 作者简介:张芳芳(1984—),女,讲师,博士。主要研究方向为编织类复合材料数值模拟。
  • 基金资助:
    河北省自然科学基金青年科学基金项目(E2016203198);秦皇岛市科学技术研究与发展计划项目(201602A036);燕山大学博士基金项目(B902)

Preloaded unit cell model and elastic prediction of 2-D triaxial braided composites

ZHANG Fangfang1, DUAN Yongchuan2()   

  1. 1. School of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
    2. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yanshan University, Qinhuangdao, Hebei 066004, China;
  • Received:2018-08-06 Revised:2019-07-15 Online:2019-10-15 Published:2019-10-23
  • Contact: DUAN Yongchuan

摘要:

针对二维三轴编织复合材料预压参数化单胞模型建立困难的问题,结合变形后的预制件模型单元离散数据,采用体素法生成了参数化的单胞模型,同时利用周期三次样条曲线构造了纤维束路径,建立了纤维束任意一点处的材料方向计算方法,以及可以描述非对称透镜形平面曲线的参数方程,然后通过单元切割程序,获得了挤压变形的编织预制件网格模型。结合变形后的预制件单元离散数据,利用体素法生成了在界面上和单胞边界面上均位移连续的参数化单胞模型,分析了不同网格尺寸下有限元模型的收敛性,并验证了模型的计算精度。实验结果表明可利用该模型对实际预压条件下二维三轴编织复合材料的弹性规律进行预测。

关键词: 体素网格, 刚度预报, 参数化单胞, 二维三轴编织, 复合材料

Abstract:

Aiming at the difficulties in establishing a 2-D triaxial braided composite preloaded parameterized unit cell model, the parametric unit cell model was generated by using the voxel method to combine the discrete unit data of the deformed prefabricated parts. A periodic cubic spline was put forward for the fiber path of 2-D triaxial braided composites. Based on this spline, the material direction calculation method was established and a parametric equation describing the asymmetric lenticular plane curve was built. Considering the finite element model of the prefabricated part established by extrusion deformation, the unit cell model was generated by pre-compression using the unit cutting program. Combined with the discrete data of the deformed prefabricated element, a voxel method was used to generate a parametric unit cell model with continuous displacement on both the interface and the cell boundary. The convergence of the finite element model at different resolutions was analyzed. The results show that the elastic behavior of the 2-D triaxial braided composites could be predicted by this model.

Key words: voxel mesh, stiffness predication, parametric unit cell, 2-D triaxial braided, composite

中图分类号: 

  • TB332

图1

二维三轴编织复合材料的结构示意图"

图2

周期性空间样条曲线"

图3

透镜形纤维束截面"

图4

纤维方向求解"

图5

材料主方向转角定义"

图6

二维三轴编织预制件网格提取"

图7

采用体素法建立的复合材料单胞网格模型"

图8

编织角和纤维体积含量对二维三轴编织复合材料横向和轴向模量的影响"

表1

组分材料性能参数"

材料 模量/GPa μ12
E1 E2 G12 G23
T700纤维 230 40 24 14.3 0.26
环氧树脂 4.0 - - - 0.35

表2

数值预测结果与实验对比"

α=30°, Vf=53.9% α=45°, Vf=45.1% α=60°, Vf=46.4%
单元数 Ey/GPa 实验值/GPa 单元数 Ey/GPa 实验值/GPa 单元数 Ey/GPa 实验值/GPa
40 572 57.81 68 113 37.97 354 320 27.34
95 680 60.80 59.07 108 162 40.01 37.75 753 061 30.95 28.5
765 440 61.14 865 293 40.72 1 195 833 31.03
[1] TSAI K H, HWAN C L, CHEN W L, et al. A Parallelogram spring model for predicting the effective elastic properties of 2D braided composites[J]. Composite Structures, 2008,83(3):273-283.
doi: 10.1016/j.compstruct.2007.04.021
[2] MIRAVETE A, BIELSA J M, CHIMINELLI A, et al. 3D mesomechanical analysis of three-axial braided composite materials[J]. Composites Science and Technology, 2006,66(15):2954-2964.
doi: 10.1016/j.compscitech.2006.02.015
[3] BENZLEY S E, PERRY E, MERKLEY K, et al. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analy-sis[C] //Proceedings, 4th International Meshing Roundtable. Albuquerque: New Mexico, 1995: 179-191.
[4] 张红梅. 三维六面体网格自适应生成方法研究及其应用[D]. 济南: 山东大学, 2007, 1-10.
ZHANG Hongmei. Research on the algorithm for 3D hexahedral mesh adaptive generation and its applica-tions[D]. Jinan: Shandong University, 2007: 1-10.
[5] 关振群, 宋超. 有限元网格生成方法研究的新进展[J]. 计算机辅助设计与图形学学报, 2003,15(1):1-14.
GUAN Zhenqun, SONG Chao. Recent advances of research on finite element mesh generation methods[J]. Journal of Computer-Aided Design & Computer Graphics, 2003,15(1):1-14.
doi: 10.1016/S0010-4485(83)80041-4
[6] KIM H J, SWAN C C. Voxel-based meshing and unit-cell analysis of textile composites[J]. International Journal for Numerical Methods in Engineering, 2003,56(7):977-1006.
doi: 10.1002/(ISSN)1097-0207
[7] GAO Y T, KO F K, HU H. Integrated design for manufacturing of braided preforms for advanced composites: part I: 2D braiding[J]. Applied Composite Materials, 2013,20(6):1065-1075.
doi: 10.1007/s10443-012-9304-5
[8] 严雪, 许希武, 张超. 二维三轴编织复合材料的弹性性能分析[J]. 固体力学学报, 2013,34(2):140-151.
YAN Xue, XU Xiwu, ZHANG Chao. Analysis of elastic properties of 2D triaxial braided composites[J]. Chinese Journal of Solid Mechanics, 2013,34(2):140-151.
[9] KIER Z T, SALVI A, THEIS G, et al. Estimating mechanical properties of 2D triaxially braided textile composites based on microstructure properties[J]. Composites Part B: Engineering, 2015,68:288-299.
doi: 10.1016/j.compositesb.2014.08.039
[10] 张芳芳, 姜文光, 刘才, 等. 基于区域叠合技术的三维编织复合材料渐进损伤过程数值模拟[J]. 复合材料学报, 2013,30(6):227-236.
ZHANG Fangfang, JIANG Wenguang, LIU Cai, et al. Simulation of progressive damage of 3D braided composites using domain superposition technique[J]. Acta Materiae Compositae Sinica, 2013,30(6):227-236.
[11] 张芳芳, 刘才. 三维编织复合材料渐进损伤及拉伸强度数值预测[J]. 中国机械工程, 2014,25(3):321-326.
ZHANG Fangfang, LIU Cai. Numerical prediction of progressive damage and tension strength of 3D braided composites[J]. China Mechanical Engineering, 2014,25(3):321-326.
[12] BYUN J H. The analytical characterization of 2-D braided textile composites[J]. Composites Science and Technology, 2000,60(5):705-716.
doi: 10.1016/S0266-3538(99)00173-6
[13] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003,40(8):1907-1921.
doi: 10.1016/S0020-7683(03)00024-6
[1] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10): 67-73.
[2] 马飞飞. 离散树脂成型复合材料的防刺与服用性能[J]. 纺织学报, 2020, 41(07): 67-71.
[3] 马莹, 何田田, 陈翔, 禄盛, 王友棋. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(07): 59-66.
[4] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[5] 陈立富, 于伟东. 人造金刚石填充聚酰亚胺树脂基复合材料防刺性能[J]. 纺织学报, 2020, 41(05): 38-44.
[6] 梁双强, 陈革, 周其洪. 开孔三维编织复合材料的压缩性能[J]. 纺织学报, 2020, 41(05): 79-84.
[7] 李鹏, 万振凯, 贾敏瑞. 基于碳纳米管纱线扭电能的复合材料损伤监测[J]. 纺织学报, 2020, 41(04): 58-63.
[8] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[9] 张恒宇, 张宪胜, 肖红, 施楣梧. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(03): 182-187.
[10] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[11] 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/ 苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57.
[12] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能 [J]. 纺织学报, 2020, 41(01): 102-109.
[13] 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/ 石墨烯/ 棉织物复合电极的制及其电化学性能 [J]. 纺织学报, 2020, 41(01): 96-101.
[14] 赵颖会, 顾迎春, 胡斐, 林佳友, 叶蓝琳, 李静静, 陈胜. 芳香族聚酰胺纳米纤维复合材料研究进展 [J]. 纺织学报, 2020, 41(01): 184-189.
[15] 刘军, 刘奎, 宁博, 孙宝忠, 张威. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!