纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 140-144.doi: 10.13475/j.fzxb.20181103505

• 服装工程 • 上一篇    下一篇

消防服用隔热层孔型结构优化与测评

胡贝贝1, 杜菲菲1, 李小辉1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2018-11-13 修回日期:2019-07-02 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 李小辉
  • 作者简介:胡贝贝(1996—),女,硕士生。主要研究方向为功能防护服装。
  • 基金资助:
    国家自然科学基金资助项目(51703026);中央高校基本科研业务费专项资金资助项目(2232019G-08)

Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing

HU Beibei1, DU Feifei1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2018-11-13 Revised:2019-07-02 Online:2019-11-15 Published:2019-11-26
  • Contact: LI Xiaohui

摘要:

为进一步提高消防服用蜂窝织物的热防护性能,针对隔热层进行蜂窝孔型的结构优化与测评。选取当前典型的消防服各层材料,综合考虑隔热层分层和蜂窝孔型的边长、壁厚等因素,分别对直孔和斜孔设计了6种孔洞尺寸以及1种实心对照组。利用激光切割技术进行13组实验方案制备试样,并采用热防护性能测试仪进行闪火燃烧测试。实验结果表明:蜂窝分层重组可有效提高消防服用蜂窝织物系统的热防护性能;通过非参数相关样本检验,测得不同开孔方式蜂窝织物的热防护性能有着显著性差异,说明斜孔结构比直孔具有更好的热防护性。

关键词: 消防服, 蜂窝织物, 热防护性能, 结构优化, 舒适性能

Abstract:

In order to improve the thermal protective performance of honeycomb fabric for firefighter protective clothing, the honeycomb hole structure optimization and evaluation were carried out for the thermal barrier. The current typical fabrics of firefighter protective clothing were chosen as the experimental samples. Considering thermal liner layering, honeycomb side length and wall thickness, six kinds of hole sizes were designed for the straight holes and the inclined holes respectively, and a solid control group was presented. Then 13 sets of experimental schemes were prepared by laser cutting technology and a thermal protective performance tester was adopted to perform the flash fire test. The experimental results show that honeycomb layering reorganization effectively improves the thermal protective performance of honeycomb fabric systems for firefighter protective clothing. By the non-parametric correlation sample test, a significant difference exists in the thermal protective performance of the honeycomb sandwich structure with different opening methods, and the inclined hole structure has better thermal protective performance than the straight hole.

Key words: firefighter protective clothing, honeycomb fabric, thermal protective performance, structure optimization, comfort performance

中图分类号: 

  • TS941.73

表1

各层试样及其基本性能"

功能层 织物种类 织物成分 面密度/(g·m-2) 厚度/mm 透气率/(L·m-2·s-1)
外层 Nomex?
IIIA
93%Nomex,
5%Kevlar,
2%ASTF
211.6 0.50 206.57
防水透
气层
I-70/
PTFE
80%Nomex,
20%Kevlar
(PTFE)
106.1 0.66 0.84
隔热层 I-120毡
Nomex?
80%Nomex,
20%Kevlar
128.4 1.05 1 087.65
舒适层 阻燃粘胶 50%Nomex,
50%Lenzing FR
125.6 0.36 1 262.45

图1

蜂窝结构平面图"

表2

蜂窝尺寸方案"

孔型尺寸方案编号 边长/mm 壁厚/mm 质量减少率/%
C1 实心 实心 0
C2 1 5.2 6.24
C3 1 7.8 3.30
C4 2 5.2 15.99
C5 2 7.8 9.46
C6 3 5.2 24.98
C7 3 7.8 15.99

图2

隔热层用蜂窝孔型结构示意图"

表3

实验方案"

实验方案 边长/mm 壁厚/mm 尺寸方案 开孔方式 透气率/(L·m-2·s-1)
1# 实心 实心 C1 297.15
2# 1 5.2 C2 E(直孔) 785.76
3# 1 7.8 C3 E(直孔) 582.40
4# 2 5.2 C4 E(直孔) 1 911.04
5# 2 7.8 C5 E(直孔) 1 112.81
6# 3 5.2 C6 E(直孔) 2 588.19
7# 3 7.8 C7 E(直孔) 1 488.05
8# 1 5.2 C2 S(斜孔) 709.33
9# 1 7.8 C3 S(斜孔) 532.54
10# 2 5.2 C4 S(斜孔) 1 162.33
11# 2 7.8 C5 S(斜孔) 764.91
12# 3 5.2 C6 S(斜孔) 1 362.95
13# 3 7.8 C7 S(斜孔) 965.02

图3

红外热像检测示意图"

图4

织物系统的TPP值"

[1] 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018,39(6):106-112.
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018,39(6):106-112.
[2] FLOURIS A D, CHEUNG S S. Design and control optimization of microclimate liquid cooling systems underneath protective clothing[J]. Ann Biomed Eng, 2006,34(3):359-372.
doi: 10.1007/s10439-005-9061-9 pmid: 16463083
[3] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012,33(5):101-105.
WANG Yunyi, ZHAO Mengmeng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation[J]. Journal of Textile Research, 2012,33(5):101-105.
[4] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
[5] 冯晶晶, 赵晓明, 郑振荣. SiO2气凝胶在热防护纺织品中的应用[J]. 纺织科学与工程学报, 2018,35(2):113-117.
FENG Jingjing, ZHAO Xiaoming, ZHENG Zhenrong, Application of SiO2 aerogel in thermal protective textiles[J]. Journal of Textile Science and Engineering, 2018,35(2):113-117.
[6] 赵石楠. 气凝胶型隔热层消防服概念及应用的可行性研究[J]. 消防技术与产品信息, 2018,31(1):67-69.
ZHAO Shinan. Feasibility study on the concept and application of aerogel insulation layer for firefighter protective clothing[J]. Fire Technique and Products Information, 2018,31(1):67-69.
[7] LU J, HONG K, YOON K. Effect of aerogel on thermal protective performance of fire-fighter clothing[J]. Journal of Fiber Bioengineering and Informatics, 2013(9):315-324.
[8] 苗勇, 李俊. 减少热蓄积的消防服开发及其性能评价[J]. 纺织学报, 2016,37(1):111-115.
MIAO Yong, LI Jun. Development and evaluation of firefighter's clothing capable of enhancing heat dissipation[J]. Journal of Textile Research, 2016,37(1):111-115.
[9] MCQUERRY M, DENHARTOG E, BARKER R. Garment ventilation strategies for improving heat loss in structural firefighter clothing ensembles[J]. AATCC Journal of Research, 2016,3(3):9-14.
doi: 10.14504/ajr.3.3.2
[10] MCQUERRY M, BARKER R, DENHARTOG E. Relationship between novel design modifications and heat stress relief in structural firefighters' protective clothing[J]. Applied Ergonomics, 2018,70:260-268.
pmid: 29866318
[11] DAFANG W, LIMING Z, BING P, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016,29(1):53-77.
[12] 王浩. 气动加热条件下金属蜂窝结构传热特性研究[D]. 哈尔滨工业大学, 2014:1-3.
WANG Hao. Study on thermal properties of metallic honey-comb constructure on aerodynamic heating condition[D]. Harbin: Harbin Institute of Technology, 2014:1-3.
[13] 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151.
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metallic honeycomb parameters on its heat transmission performance[J]. Materials Review, 2013,27(8):147-151.
[14] 徐海建. 消防服蜂窝结构热防护性能的基础实验研究[D]. 上海:东华大学, 2017:25-36.
XU Haijian. Basic experimental research on thermal protective performance of honeycomb structure for firefighter protective clothing[D]. Shanghai: Donghua University, 2017:25-36.
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[3] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[4] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[5] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[6] 刘林玉 陈诚毅 王珍玉 祝焕 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[7] 杜菲菲 李小辉 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[8] 张海棠, 王宏付, 柯莹. 应急救援类防护服装发展现状与趋势[J]. 纺织学报, 2019, 40(01): 175-181.
[9] 李冻 陈太球 蒋春燕 傅佳佳 王鸿博. 原料及结构参数对防电弧织物性能的影响[J]. 纺织学报, 2018, 39(08): 41-45.
[10] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[11] 王丽君 卢业虎 王帅 马妮妮. 形状记忆合金尺寸对消防服面料防护性能的影响[J]. 纺织学报, 2018, 39(06): 113-118.
[12] 牛丽 钱晓明 范金土 张文欢 师云龙. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(06): 106-112.
[13] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[14] 邓梦 王云仪. 低辐射热暴露下消防服热防护性能测评方法研究进展[J]. 纺织学报, 2017, 38(12): 162-168.
[15] 王帅 卢业虎 王丽君 尤禅懿. 低辐射环境下形状记忆合金对防火面料隔热性能的影响[J]. 纺织学报, 2017, 38(08): 114-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!