纺织学报 ›› 2019, Vol. 40 ›› Issue (11): 20-25.doi: 10.13475/j.fzxb.20180802806

• 纤维材料 • 上一篇    下一篇

基于非牛顿流体本构方程的熔喷纤维直径预测

孙光武1, 李杰聪2, 辛三法1, 王新厚2()   

  1. 1.上海工程技术大学 服装学院, 上海 201620
    2.东华大学 纺织学院, 上海 201620
  • 收稿日期:2018-08-10 修回日期:2019-08-11 出版日期:2019-11-15 发布日期:2019-11-26
  • 通讯作者: 王新厚
  • 作者简介:孙光武(1986—),男,讲师,博士。主要研究方向为非织造技术理论、纺织品热湿传递机制与表征等。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51703124)

Diameter prediction of melt-blown fiber based on non-Newtonian fluid constitutive equations

SUN Guangwu1, LI Jiecong2, XIN Sanfa1, WANG Xinhou2()   

  1. 1. School of Fashion Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-08-10 Revised:2019-08-11 Online:2019-11-15 Published:2019-11-26
  • Contact: WANG Xinhou

摘要:

为从理论上精确预测熔喷纤维的直径并揭示其成纤机制,立足于拉格朗日方法的熔喷珠链模型,引入PTT、UCM、Giesekus和Rouse-Zimm这4种非牛顿流体本构方程,分别预测了纤维在气流场中的受力与直径变化。结果表明:采用不同的非牛顿流体本构方程计算获得的纤维黏弹力不同,由此导致模拟结果具有明显差异;纤维的最终直径受到内外应力差和凝固点位置的影响,内外应力差越大,纤维细化速度越快,凝固点距离喷丝孔越远,纤维具有更加充分的空间拉伸,更容易产生较细的纤维;采用UCM非牛顿流体本构方程模拟获得的纤维最粗,而采用Giesekus非牛顿流体本构方程模拟获得的纤维最细;采用Giesekus非牛顿流体本构方程的珠链模型获得的预测结果与实验结果更相符。

关键词: 熔喷纤维, 珠链模型, 拉格朗日方程, 非牛顿流体, 黏弹力, 纤维直径

Abstract:

For accurately predicting the final diameter of fiber and revealing the mechanism of fiber formation, four types of non-Newtonian fluid constitutive equations, PTT, UCM, Giesekus and Rouse-Zimm, were introduced on the basis of Lagrange method and bead-chain model. The stress and resulting diameter of fiber in the air jet were predicted, respectively. The results indicate that: the viscoelastic forces calculated by different non-Newtonian fluid constitutive equations are different, thus the predicted results are different. Final diameter of fiber is affected by the difference between internal and external stress and the position of freezing point. Larger difference between internal and external stress generates faster decay rate of diameter. Fiber would have enough space to be drawn if the freezing point of fiber appears far away from the orifice. The fiber calculated by UCM fluid constitutive equation is the thickest, while the fiber predicted by Giesekus equation is the finest. The predicted results from Giesekus fluid constitutive equation show good agreement with the experimental results.

Key words: melt-blowing fiber, bead-chain model, Lagrange equation, non-Newtonian fluid, viscoelastic stress, fiber diameter

中图分类号: 

  • TS171.9

图1

纤维珠链模型"

图2

不同非牛顿流体本构方程得到的纤维应力随z坐标的变化"

图3

不同非牛顿流体本构方程得到的纤维直径随z坐标的变化"

表1

不同非牛顿流体本构方程计算的指标"

非牛顿流体
方程名称
最大内外应力差/kPa 平均细化速度/(μm·cm-1) 凝固点位置/cm 最终纤维直径/μm
Giesekus 18.72 128.00 6.45 74.12
PTT 12.54 126.86 5.27 79.18
UCM 14.36 127.02 5.36 83.42
Rouse-Zimm 9.21 125.80 7.62 74.76
[1] UYTTENDAELE M A J, SHAMBAUGH R L. Melt blowing: general equation development and experimental verification[J]. AICHE Journal, 1990,36(2):175-186.
doi: 10.1002/(ISSN)1547-5905
[2] RAO R S, SHAMBAUGH R L. Vibration and stability in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 1993,32(12):3100-3111.
[3] MARLA V T, SHAMBAUGH R L. Three-dimensional model of the melt-blowing process[J]. Industrial & Engineering Chemistry Research, 2003,42(26):6993-7005.
[4] CHEN T, HUANG X. Air drawing of polymers in the melt blowing nonwoven process: mathematical modeling[J]. Modeling and Simulation in Materials Science, 2004,12(12):381-388.
[5] SINHA-RAY S, YARIN A L, POURDEYHIMI B. Meltblowing: I: basic physical mechanisms and threadline model[J]. Journal of Applied Physics, 2010,108(3):1-12.
[6] SHAMBAUGH B R, PAPAVASSILIOU D V, SHAMBAUGH R L. Next-generation modeling of melt blowing[J]. Industrial & Engineering Chemistry Research, 2011,50(21):12233-12245.
[7] SUN Y F, ZENG Y C, WANG X H. Three-dimensional model of whipping motion in the processing of microfibers[J]. Industrial & Engineering Chemistry Research, 2011,50(2):1099-1109.
[8] ZENG Y C, SUN Y F, WANG X H. Numerical approach to modeling fiber motion during melt blowing[J]. Joural of Applied Polymer Science, 2011,119(4):2112-2123.
[9] SUN G, YANG J, SUN X, et al. Simulation and modeling of micro-fibrous web formation in melt blowing[J]. Industrial & Engineering Chemistry Research, 2016,55(18):5431-5437.
[10] SUN G, SONG J, XU L, et al. Numerical modelling of microfibers formation and motion during melt blowing[J]. Journal of The Textile Institute, 2018,109(3):300-306.
doi: 10.1080/00405000.2017.1342522
[11] SUN G, YANG J, XIN S, et al. Influence of processing conditions on the basis weight uniformity of melt-blown fibrous webs: numerical and experimental study[J]. Industrial & Engineering Chemistry Research, 2018,57(29):9707-9715.
[12] GAGON D K, DENN M M. Computer simulation of steady polymer melt spinning[J]. Polymer Engineering & Science, 1981,21(13):844-853.
doi: 10.1002/(ISSN)1548-2634
[13] 吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2002: 18-114.
WU Qiye, WU Jing'an. Rheology of Polymer Materials[M]. Beijing: Higher Education Press, 2008: 18-114.
[14] ZIEININSKI K F, SPRUIELL J E. A mathematical model of crystalline fiber-forming polymer[J]. Synthetic Fibers, 1986,4:31.
[15] SHIN D M, LEE J S, JUNG H W, et al. Analysis of the effect of flow-induced crystallization on the stability of low-speed spinning using the linear stability method[J]. Korea-Australia Rheology Journal, 2005,17(2):63-69.
[16] 陈廷. 熔喷非织造气流拉伸工艺研究[D]. 上海:东华大学, 2003: 98.
CHEN Ting. Study on the air drawing in melt blowing nonwoven process[D]. Shanghai: Donghua University, 2003: 98.
[17] BRESEE R R, KO W C. Fiber formation during melt blowing[J]. International Nonwovens Journal, 2003,12(2):21-28.
[18] YIN H, YAN Z, KO W C, et al. Fundamental description of the melt blowing process[J]. International Nonwovens Journal, 2000,9(4):25-28.
[1] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(06): 158-164.
[2] 谢胜 韩万里. 熔喷过程中纤维直径再次变大的模拟与验证[J]. 纺织学报, 2017, 38(04): 17-21.
[3] 梁超 胡春艳 阎克路 朱晓敏 THOMAS Helga. 影响熔融静电纺聚丙烯纤维直径的工艺因素[J]. 纺织学报, 2016, 37(11): 14-18.
[4] 杨喜爱 肖爱平 冷鹃 程毅 廖丽萍. 亚麻纤维线密度与直径回归相关模型的构建及验证[J]. 纺织学报, 2014, 35(8): 21-0.
[5] 庄昌明 孟晓华 曾泳春. 静电纺丝接收装置的大小对电场分布和纤维接收的影响[J]. 纺织学报, 2014, 35(6): 7-0.
[6] 李志民;孙亚峰;王新厚. 静电纺丝拉伸模型与实验[J]. 纺织学报, 2008, 29(10): 5-8.
[7] 潘志娟;徐安长;夏艳杰. 聚酰胺含量对静电纺丝素纤维结构和性能的影响[J]. 纺织学报, 2007, 28(6): 23-27.
[8] 鲍韡韡;张幼珠;尹桂波;虞青亮. 丝素与明胶共混静电纺丝[J]. 纺织学报, 2007, 28(3): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!