纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 21-26.doi: 10.13475/j.fzxb.20181202806
白赫1,2, 钱晓明1(), 范金土1,3, 钱幺1, 刘永胜1, 王小波1
BAI He1,2, QIAN Xiaoming1(), FAN Jintu1,3, QIAN Yao1, LIU Yongsheng1, WANG Xiaobo1
摘要:
为深入研究纤维质多孔材料的微观结构,通过建立纤维间接触点数量的理论模型,分别研究纤维在空间中三维和二维分布情况下,纤维间接触点数量的理论值。根据泊松分布的特点,结合Sampson等的研究结论,建立纤维间接触点数量、纤维直径和孔隙率的函数关系。使用Geo-Dict软件模拟纤维结构,同时计算纤维间接触点数量,再分别将纤维不同取向的理论预测值和前人研究结果相比较。结果表明:当纤维长径比不变时,纤维数量与纤维间接触点数量呈线性正比关系;当孔隙率不变时,纤维直径与纤维间接触点数量呈反比关系;当纤维直径固定时,纤维间接触点数量随孔隙率增加而减少;当纤维直径大于40 μm时,接触点数量不随孔隙率的变化而改变。
中图分类号:
[1] | BAGHERZADEH R, LATIFI M, NAJAR S S, et al. Experimental verification of theoretical prediction of fiber to fiber contacts in electrospun multilayer nano-microfibrous assemblies: effect of fiber diameter and network porosity[J]. Journal of Industrial Textiles, 2014,107(1):9-16. |
[2] | NAKAMURA K, SUDA T, MATSUMOTO K. Characterization of pore size distribution of non-woven fibrous filter by inscribed sphere within 3D filter model[J]. Separation and Purification Technology, 2018,197:289-294. |
[3] |
GONG J, RUTLAND C J. PDF-based heterogeneous multiscale filtration model[J]. Environmental Science & Technology, 2015,49(8):4963-4970.
pmid: 25822651 |
[4] | LI Wei, SHEN Shengnan, LI Hui. Study and optimization of the filtration performance of multi-fiber filter[J]. Advanced Powder Technology, 2016,27(2):638-645. |
[5] |
WANG K, ZHAO H. The influence of fiber geometry and orientation angle on filtration performance[J]. Aerosol Science and Technology, 2015,49(2):75-85.
doi: 10.1080/02786826.2014.1003278 |
[6] | PIEKAAR H W, CLARENBURG L A. Aerosol filters: the tortuosity factor in fibrous filters[J]. Chemical Engineering Science, 1967,22(12):1817-1827. |
[7] | DODSON C T J, SAMPSON W W. Modeling a class of stochastic porous media[J]. Applied Mathematics Letters, 1997,10(2):87-89. |
[8] | SAMPSON W W. A model for fibre contact in planar random fibre networks[J]. Journal of Materials Science, 2004,39(8):2775-2781. |
[9] | KOMORI T, ITOH M. Number of fiber to fiber contacts in general fiber assemblies[J]. Textile Research Journal, 1977,47(1):13-17. |
[10] | PAN N. Analytical characterization of the anisotropy and local heterogeneity of short fiber composites: fiber fraction as a variable[J]. Journal of Composite Materials, 1994,28(16):1500-1531. |
[11] | EMERSON M J, JESPERSEN K M, DAHL A B, et al. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials[J]. Composites Part A: Applied Science and Manufacturing, 2017,97:83-92. |
[12] | KANG S, LEE H, KIM S C, et al. Modeling of fibrous filter media for ultrafine particle filtration[J]. Separation and Purification Technology, 2019,209:461-469. |
[13] | HUANG X, HE Y, ZHOU W, et al. Pore network modeling of fibrous porous media of uniform and gradient porosity[J]. Powder Technology, 2019,343:350-361. |
[14] | GONG J, STEWART M L, ZELENYUK A, et al. Importance of filter's microstructure in dynamic filtration modeling of gasoline particulate filters(GPFs): inhomogeneous porosity and pore size distribution[J]. Chemical Engineering Journal, 2018,338:15-26. |
[15] | WYK V C M. 20—Note on the compressibility of wool[J]. Journal of The Textile Institute Transactions, 1946,37(12):285-292. |
[16] | BERBERI P. A new unified method for measurement of electrical resistivity of textile assemblies[C]// Proceedings ESA Annual Meeting. [S.l.], 1999: 23-25. |
[17] | SEBESYTEN E, HICKIE T S. The effect of certain fibre parameters on the compressibility of wool[J]. Journal of The Textile Institute, 1971,62(10):545-560. |
[18] | 于伟东. 纺织材料的形及其重要作用与结果[J]. 纺织学报, 2013,34(2):1-12. |
YU Weidong. Shape of fibrous materials:its significant effects and findings[J]. Journal of Textile Research, 2013,34(2):1-12. | |
[19] | BAGHERZADEH R, NAJAR S S, LATIFI M, et al. A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials[J]. Journal of Biomedical Materials Research: Part A, 2013,101(7):2107-2117. |
[20] | SAMPSON W W. A multiplanar model for the pore radius distribution in isotropic near-planar stochastic fibre networks[J]. Journal of Materials Science, 2003,38(8):1617-1622. |
[21] | KUWABARA S. The forces experienced by ramdomly distributed parallel circular cylinders of spheres in Viscous flow at small reynolds numbers[J]. Journal of the Physical Society of Japan, 2007,14(4):527-532. |
[22] | KALLMES O, CORTE H. The structure of paper: I: the statistical geometry of an ideal two dimensional fiber network[J]. TAPPI Journal, 1960,43(9):737-752. |
[1] | 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61. |
[2] | 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178. |
[3] | 林芳兵 蒋金华 陈南梁 杜晓冬 苏传丽. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(05): 14-19. |
[4] | 苏钦城 赵晓明 李卫斌 李建雄. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(2): 155-160. |
[5] | 王美红 王曙东. 柳皮纤维的结构与性能[J]. 纺织学报, 2016, 37(01): 23-27. |
[6] | 王响 靳向煜. 再生牛皮胶原蛋白复合纤维的性能[J]. 纺织学报, 2015, 36(04): 1-6. |
[7] | 陈和春 陈桂香. 圆环形仿形机织物的剪切变形[J]. 纺织学报, 2013, 34(4): 53-56. |
[8] | 金春奎 仲岑然. 傅里叶变换在纳米纤维取向测量中的应用[J]. 纺织学报, 2013, 34(11): 34-0. |
[9] | 李彩兰 邓谨 王荣武. 图像融合技术在非织造材料纤维取向中的应用[J]. 纺织学报, 2013, 34(10): 26-0. |
[10] | 魏赛男 李瑞洲 陈利 姚继明 彭志远. 吸波铁纤维的结构及性能[J]. 纺织学报, 2013, 34(1): 16-19. |
[11] | 姜生 徐蕴燕 晏雄 刘其霞. 氯化聚乙烯/AO 2246/七孔涤纶复合材料微观形态结构[J]. 纺织学报, 2012, 33(10): 14-18. |
[12] | 徐安长;张露;潘志娟. 醇处理对静电纺MWNTs/丝素/聚酰胺复合纤维的影响[J]. 纺织学报, 2010, 31(7): 1-5. |
[13] | 徐安长;张敏;潘志娟. 静电纺MWNTs/丝素复合纳米纤维毡的结构与性能[J]. 纺织学报, 2010, 31(6): 1-6. |
[14] | 刘洋;徐安长;陈倩;潘志娟. 静电纺工艺对PA6/MWNTs纳米纤维纱结构与性能的影响[J]. 纺织学报, 2010, 31(3): 1-6. |
[15] | 周伟涛;何建新;杜姗;崔世忠;高卫东. 丝素蛋白/醋酸纤维素共混纤维毡的制备与表征[J]. 纺织学报, 2010, 31(11): 16-19. |
|