纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 21-26.doi: 10.13475/j.fzxb.20181202806

• 纤维材料 • 上一篇    下一篇

纤维质多孔材料中纤维间接触点数量的理论模型

白赫1,2, 钱晓明1(), 范金土1,3, 钱幺1, 刘永胜1, 王小波1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津师范大学 物理与材料科学学院, 天津 300387
    3.香港理工大学 纺织及服装学系, 香港 999077
  • 收稿日期:2018-12-12 修回日期:2019-05-25 出版日期:2019-12-15 发布日期:2019-12-18
  • 通讯作者: 钱晓明
  • 作者简介:白赫(1986—),男,博士生。主要研究方向为新型非织材料结构设计。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309300);天津市科技计划项目(17PTSYJC00150)

Theoretical model for number of fiber contacts in fibrous porous materials

BAI He1,2, QIAN Xiaoming1(), FAN Jintu1,3, QIAN Yao1, LIU Yongsheng1, WANG Xiaobo1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
    3. Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2018-12-12 Revised:2019-05-25 Online:2019-12-15 Published:2019-12-18
  • Contact: QIAN Xiaoming

摘要:

为深入研究纤维质多孔材料的微观结构,通过建立纤维间接触点数量的理论模型,分别研究纤维在空间中三维和二维分布情况下,纤维间接触点数量的理论值。根据泊松分布的特点,结合Sampson等的研究结论,建立纤维间接触点数量、纤维直径和孔隙率的函数关系。使用Geo-Dict软件模拟纤维结构,同时计算纤维间接触点数量,再分别将纤维不同取向的理论预测值和前人研究结果相比较。结果表明:当纤维长径比不变时,纤维数量与纤维间接触点数量呈线性正比关系;当孔隙率不变时,纤维直径与纤维间接触点数量呈反比关系;当纤维直径固定时,纤维间接触点数量随孔隙率增加而减少;当纤维直径大于40 μm时,接触点数量不随孔隙率的变化而改变。

关键词: 多孔材料, 微观结构, 纤维取向, 分布函数, 纤维间接触点数量, 理论模型

Abstract:

In order to study the microstructure of fibrous porous materials, the theoretical values of the number of contact points among fibers in three-dimensional and two-dimensional distribution of fibers in space were studied by establishing a theoretical model of the number of fiber contacts. According to the characteristics of Poisson distribution and combining with the research conclusions of Sampson et al, the functional relationships of the number of contact points among fibers, the diameter of fibers and the porosity were established. Geo-Dict software was adopted to simulate the fiber structure, and the number of fiber contacts was calculated. The theoretical predictions were compared with the results of previous studies. The results show that when the aspect ratio of fibers is constant, the number of fibers is proportional to the number of fiber contacts. When the porosity is constant, the diameter of fibers is inversely proportional to the number of fiber contacts. When the diameter of fibers is fixed, the number of fiber contact decreases with the increase of the porosity, and when the diameter of fibers is greater than 40 μm, the number of contacts does not change with the porosity.

Key words: porous material, microstructure, fiber orientation, distribution function, number of fiber contact, theoretical model

中图分类号: 

  • TQ342.3

图1

纤维笛卡尔坐标系"

图2

纤维A与纤维B交替滑动所构成的平行六面体"

图3

纤维交叉结构"

图4

三维随机分布纤维结构模拟"

图5

纤维数量与纤维间接触点数量的关系"

图6

X-Y平面随机分布纤维结构模拟"

图7

纤维数量与纤维间接触点数量关系(X-Y平面)"

图8

不同孔隙率纤维直径与纤维间接触点数量关系"

[1] BAGHERZADEH R, LATIFI M, NAJAR S S, et al. Experimental verification of theoretical prediction of fiber to fiber contacts in electrospun multilayer nano-microfibrous assemblies: effect of fiber diameter and network porosity[J]. Journal of Industrial Textiles, 2014,107(1):9-16.
[2] NAKAMURA K, SUDA T, MATSUMOTO K. Characterization of pore size distribution of non-woven fibrous filter by inscribed sphere within 3D filter model[J]. Separation and Purification Technology, 2018,197:289-294.
[3] GONG J, RUTLAND C J. PDF-based heterogeneous multiscale filtration model[J]. Environmental Science & Technology, 2015,49(8):4963-4970.
pmid: 25822651
[4] LI Wei, SHEN Shengnan, LI Hui. Study and optimization of the filtration performance of multi-fiber filter[J]. Advanced Powder Technology, 2016,27(2):638-645.
[5] WANG K, ZHAO H. The influence of fiber geometry and orientation angle on filtration performance[J]. Aerosol Science and Technology, 2015,49(2):75-85.
doi: 10.1080/02786826.2014.1003278
[6] PIEKAAR H W, CLARENBURG L A. Aerosol filters: the tortuosity factor in fibrous filters[J]. Chemical Engineering Science, 1967,22(12):1817-1827.
[7] DODSON C T J, SAMPSON W W. Modeling a class of stochastic porous media[J]. Applied Mathematics Letters, 1997,10(2):87-89.
[8] SAMPSON W W. A model for fibre contact in planar random fibre networks[J]. Journal of Materials Science, 2004,39(8):2775-2781.
[9] KOMORI T, ITOH M. Number of fiber to fiber contacts in general fiber assemblies[J]. Textile Research Journal, 1977,47(1):13-17.
[10] PAN N. Analytical characterization of the anisotropy and local heterogeneity of short fiber composites: fiber fraction as a variable[J]. Journal of Composite Materials, 1994,28(16):1500-1531.
[11] EMERSON M J, JESPERSEN K M, DAHL A B, et al. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials[J]. Composites Part A: Applied Science and Manufacturing, 2017,97:83-92.
[12] KANG S, LEE H, KIM S C, et al. Modeling of fibrous filter media for ultrafine particle filtration[J]. Separation and Purification Technology, 2019,209:461-469.
[13] HUANG X, HE Y, ZHOU W, et al. Pore network modeling of fibrous porous media of uniform and gradient porosity[J]. Powder Technology, 2019,343:350-361.
[14] GONG J, STEWART M L, ZELENYUK A, et al. Importance of filter's microstructure in dynamic filtration modeling of gasoline particulate filters(GPFs): inhomogeneous porosity and pore size distribution[J]. Chemical Engineering Journal, 2018,338:15-26.
[15] WYK V C M. 20—Note on the compressibility of wool[J]. Journal of The Textile Institute Transactions, 1946,37(12):285-292.
[16] BERBERI P. A new unified method for measurement of electrical resistivity of textile assemblies[C]// Proceedings ESA Annual Meeting. [S.l.], 1999: 23-25.
[17] SEBESYTEN E, HICKIE T S. The effect of certain fibre parameters on the compressibility of wool[J]. Journal of The Textile Institute, 1971,62(10):545-560.
[18] 于伟东. 纺织材料的形及其重要作用与结果[J]. 纺织学报, 2013,34(2):1-12.
YU Weidong. Shape of fibrous materials:its significant effects and findings[J]. Journal of Textile Research, 2013,34(2):1-12.
[19] BAGHERZADEH R, NAJAR S S, LATIFI M, et al. A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials[J]. Journal of Biomedical Materials Research: Part A, 2013,101(7):2107-2117.
[20] SAMPSON W W. A multiplanar model for the pore radius distribution in isotropic near-planar stochastic fibre networks[J]. Journal of Materials Science, 2003,38(8):1617-1622.
[21] KUWABARA S. The forces experienced by ramdomly distributed parallel circular cylinders of spheres in Viscous flow at small reynolds numbers[J]. Journal of the Physical Society of Japan, 2007,14(4):527-532.
[22] KALLMES O, CORTE H. The structure of paper: I: the statistical geometry of an ideal two dimensional fiber network[J]. TAPPI Journal, 1960,43(9):737-752.
[1] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[2] 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178.
[3] 林芳兵 蒋金华 陈南梁 杜晓冬 苏传丽. 高性能聚酰亚胺纤维及其可织造性能[J]. 纺织学报, 2018, 39(05): 14-19.
[4] 苏钦城 赵晓明 李卫斌 李建雄. 基于有限积分法的机织物电磁屏蔽效能仿真分析[J]. 纺织学报, 2016, 37(2): 155-160.
[5] 王美红 王曙东. 柳皮纤维的结构与性能[J]. 纺织学报, 2016, 37(01): 23-27.
[6] 王响 靳向煜. 再生牛皮胶原蛋白复合纤维的性能[J]. 纺织学报, 2015, 36(04): 1-6.
[7] 陈和春 陈桂香. 圆环形仿形机织物的剪切变形[J]. 纺织学报, 2013, 34(4): 53-56.
[8] 金春奎 仲岑然. 傅里叶变换在纳米纤维取向测量中的应用[J]. 纺织学报, 2013, 34(11): 34-0.
[9] 李彩兰 邓谨 王荣武. 图像融合技术在非织造材料纤维取向中的应用[J]. 纺织学报, 2013, 34(10): 26-0.
[10] 魏赛男 李瑞洲 陈利 姚继明 彭志远. 吸波铁纤维的结构及性能[J]. 纺织学报, 2013, 34(1): 16-19.
[11] 姜生 徐蕴燕 晏雄 刘其霞. 氯化聚乙烯/AO 2246/七孔涤纶复合材料微观形态结构[J]. 纺织学报, 2012, 33(10): 14-18.
[12] 徐安长;张露;潘志娟. 醇处理对静电纺MWNTs/丝素/聚酰胺复合纤维的影响[J]. 纺织学报, 2010, 31(7): 1-5.
[13] 徐安长;张敏;潘志娟. 静电纺MWNTs/丝素复合纳米纤维毡的结构与性能[J]. 纺织学报, 2010, 31(6): 1-6.
[14] 刘洋;徐安长;陈倩;潘志娟. 静电纺工艺对PA6/MWNTs纳米纤维纱结构与性能的影响[J]. 纺织学报, 2010, 31(3): 1-6.
[15] 周伟涛;何建新;杜姗;崔世忠;高卫东. 丝素蛋白/醋酸纤维素共混纤维毡的制备与表征[J]. 纺织学报, 2010, 31(11): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!