纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 9-15.doi: 10.13475/j.fzxb.20190202608

• 纤维材料 • 上一篇    下一篇

聚芳酯纤维的化学稳定性及其腐蚀降解

姜兆辉1,2,3, 金梦甜4, 郭增革1(), 贾曌1, 王其才1, 金剑4,5   

  1. 1.山东理工大学 鲁泰纺织服装学院, 山东 淄博 255000
    2.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
    3.闽江学院 福建省新型功能性纺织纤维及材料重点实验室, 福建 福州 350108
    4.中国纺织科学研究院有限公司 生物源纤维制造技术国家重点实验室, 北京 100025
    5.青岛大学 山东省生态纺织协同创新中心, 山东 青岛 266071
  • 收稿日期:2019-02-18 修回日期:2019-09-20 出版日期:2019-12-15 发布日期:2019-12-18
  • 通讯作者: 郭增革
  • 作者简介:姜兆辉(1982—),男,副教授,博士。主要研究方向为功能纤维。
  • 基金资助:
    山东省高等学校科技计划项目(J17KB011);淄博市校城融合发展计划项目(2018ZBXC474);黄河三角洲研究院创新引导基金项目(2018-7);浙江省清洁染整技术研究重点实验室开放基金项目(1804);福建省新型功能性纺织纤维及材料重点实验室开放基金项目(FKLTFM1820)

Chemical stability and corrosion degradation of polyarylester fiber

JIANG Zhaohui1,2,3, JIN Mengtian4, GUO Zengge1(), JIA Zhao1, WANG Qicai1, JIN Jian4,5   

  1. 1. Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, Shandong 255000, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang312000, China
    3. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    4. State Key Laboratory of Biobased Fiber Manufacture Technology, China Textile Academy, Beijing 100025, China
    5. Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2019-02-18 Revised:2019-09-20 Online:2019-12-15 Published:2019-12-18
  • Contact: GUO Zengge

摘要:

为研究聚芳酯纤维在高湿热、强腐蚀条件下的耐受性,选用酸、碱及强氧化剂处理聚芳酯纤维,并借助光学显微镜、扫描电子显微镜、差示扫描量热仪、傅里叶变换红外光谱仪及热失重分析仪等,研究纤维形态结构、聚集态结构及大分子链结构变化。结果表明:在常温和60 ℃下,H2SO4处理后纤维表面未见明显变化,HNO3处理后纤维仅出现少量沟槽,但经KMnO4处理后,纤维横向沟槽增多,纵向呈现微裂纹,尤其经NaOH处理后,纤维表面由沟槽变为凹坑,甚至呈腐蚀断裂状态;酸和KMnO4并未显著破坏纤维的晶区有序结构,而NaOH处理降低了纤维晶区规整度;H2SO4、HNO3和NaOH及KMnO4处理引起聚芳酯纤维大分子链苯环上—CH键断裂,导致纤维降解,残炭率降低。

关键词: 聚芳酯纤维, 化学稳定性, 聚集态结构, 高性能纤维

Abstract:

In order to investigate the resistance of polyacrylester fiber to high damp heat and strong corrosion, the fibers were treated by strong acid, alkali and oxidant, and then the morphological structure, aggregation structure and macromolecular chain structure of the fibers were studied. The results show that the surfaces of fibers treated with H2SO4 show no significantly change at room temperature and 60 ℃, while only a few grooves appear in the surface of fibers treated with HNO3. However, after treatment by KMnO4, the transverse grooves of the fibers increase and the longitudinal microcracks appear. Especially after treatment by NaOH, the surface of the fibers changes from grooves to pits and even show a corrosion fracture state. Acid and KMnO4 don't significantly destroy the ordered structure of the crystalline region, while NaOH solution reduces the regularity of the crystalline region. The breakage of —CH bond on the benzene ring of macromolecular chains occurs after treatment by H2SO4, HNO3, NaOH and KMnO4, and eventually leads to degradation of polyarylester fibers and reduction of residual ratio.

Key words: polyarylester fiber, chemical stability, aggregation structure, high performance fiber

中图分类号: 

  • TQ317.2

图1

聚芳酯纤维的OM照片(×100)"

表1

聚芳酯纤维与PPTA纤维的力学性能"

纤维名称 断裂强
力/cN
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
初始模量/
(cN·tex-1)
断裂功/
mJ
聚芳酯纤维 234.46 15.83 6.61 336.43 0.77
PPTA纤维 48.14 15.32 5.30 314.35 0.13

图2

室温条件下经酸溶液处理后聚芳酯纤维的OM照片(×100)"

图3

60 ℃下经酸溶液处理后聚芳酯纤维的OM照片(×100)"

图4

60 ℃下经酸溶液处理后聚芳酯纤维的扫描电镜照片(×5 000)"

图5

经KMnO4溶液处理后聚芳酯纤维的OM照片(×100)"

图6

经NaOH溶液处理后聚芳酯纤维的OM图(×100)"

图7

经NaOH和KMnO4溶液处理后聚芳酯纤维的扫描电镜照片(×5 000)"

图8

化学处理后聚芳酯纤维的直径变化曲线"

图9

化学处理后聚芳酯纤维的DSC升温曲线"

图10

化学处理后聚芳酯纤维的红外光谱谱图"

图11

聚芳酯纤维的TG及DTG曲线"

[1] 杜以军, 蒋金华, 陈南梁. Vectran® 纤维的耐酸碱性[J]. 玻璃钢/复合材料, 2014(3):27-31.
DU Yijun, JIANG Jinhua, CHEN Nanliang. Resistance to acid and alkali of Vectran® fiber[J]. Fiber Reinforced Plastics/Composites, 2014(3):27-31.
[2] MENCZEL J D, COLLINS G L, SAW K. Thermal analysis of Vectran® fibers and films[J]. Journal of Thermal Analysis, 1997,49:201-208.
[3] XIA X, WANG H F, HUANG F L, et al. Surface characterization of aromatic thermotropic liquid crystalline fiber deposited by nanostructured silver[J]. Fibers and Polymers, 2010,11(6):813-818.
[4] 潘巧玲, 杜以军, 蒋金华, 等. 聚芳酯织物的光老化性能[J]. 纺织学报, 2014,35(7):53-56.
PAN Qiaoling, DU Yijun, JIANG Jinhua, et al. Photoaging properties of Vectran® fabric[J]. Journal of Textile Research, 2014,35(7):53-56.
[5] 谭惠丰, 刘羽熙, 刘宇艳, 等. 临近空间飞艇蒙皮材料研究进展和需求分析[J]. 复合材料学报, 2012,29(6):1-8.
TAN Huifeng, LIU Yuxi, LIU Yuyan, et al. Research progress and requirement analysis of envelope materials for near space arship[J]. Acta Materiae Compositae Sinica, 2012,29(6):1-8.
[6] 庄园园. 热致性液晶聚芳酯纤维的制备与表征[D]. 上海:东华大学, 2009: 23-25.
ZHUANG Yuanyuan. The preparation and properties of thermotropic liquid crystal polyarylate fiber[D]. Shanghai: Donghua University, 2009: 23-25.
[7] 甘海啸. 液晶聚芳酯纤维制备与性能研究[D]. 上海:东华大学, 2012: 6-8.
GAN Haixiao. The preparation and properties of liquid crystal polyarylate fiber[D]. Shanghai: Donghua University, 2012: 6-8.
[8] 施伟利. 热致性液晶聚芳酯初生纤维的热处理与表面修饰[D]. 武汉:武汉纺织大学, 2013: 2-3.
SHI Weili. The heat-treatment and surface modification of thermotropic liquid-crystal polyarylate as-spun fiber[D]. Wuhan: Wuhan Textile University, 2013: 2-3.
[9] 李伟. Vectran®纤维与绳索的蠕变与应力松弛行为研究[D]. 哈尔滨:哈尔滨工业大学, 2010: 42-45.
LI Wei. Research on creep and stress relaxation of Vectran® fiber and rope [D]. Harbin: Harbin Institute of Technology, 2010: 42-45.
[10] 杜以军, 蒋金华, 陈南梁. Vectran®纤维的耐热稳定性研究[J]. 玻璃钢/复合材料, 2014(4):23-26.
DU Yijun, JIANG Jinhua, CHEN Nanliang. Research on heat resistance of Vectran® fiber[J]. Fiber Reinforced Plastics/Composites, 2014(4):23-26.
[11] LIU Y X, LIU Y Y, TAN H F, et al. Structural evolution and degradation mechanism of Vectran® fibers upon exposure to UV-radiation[J]. Polymer Degradation and Stability, 2013,98:1744-1753.
[12] LIU Y X, LIU Y Y, ZHANG C H, et al. Hyperbranched polyester-stabilized nanotitania-coated Vectran® fibers with improved UV-blocking performance[J]. Macromolecular Materials and Engineering, 2015,300:64-69.
[13] LIU Y X, ZHANG C H, LIU Y T, et al. Accelerated ultraviolet aging study of the Vectran® fiber [J]. Journal of Applied Polymer Science, 2012,124(4):3286-3292.
[14] 覃俊, 王桦, 陈丽萍, 等. 热处理对Vectran® 纤维的结构与性能的影响 [J]. 合成纤维工业, 2017,40(1):29-32.
QIN Jun, WANG Hua, CHEN Liping, et al. Effect of heat treatment on structure and properties of Vectran® fiber [J]. China Synthetic Fiber Industry, 2017,40(1):29-32.
[15] 覃俊, 王桦, 陈丽萍, 等. 芳香族聚酯液晶芳香族聚酯液晶Vectran®纤维的性能与应用[J]. 纺织科技进展, 2017(12):1-4.
QIN Jun, WANG Hua, CHEN Liping, et al. Properties and application of aromatic polyester liquid crystalline Vectran® fiber[J]. Progress in Textile Science & Technology, 2017(12):1-4.
[16] TANKA M, MORITAKA Y. Single bumper shields based on Vectran® fiber[J]. Advances in Space Research, 2004,34(5):1076-1079.
[1] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[2] 朱维维, 蔡冲, 张聪, 龙家杰, 施楣梧. 超临界CO2 处理温度对二醋酸纤维结构与性能的影响[J]. 纺织学报, 2020, 41(03): 8-14.
[3] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
[4] 刘冰倩, 盛丹, 潘恒, 曹根阳. N,N-二甲基乙酰胺/氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20.
[5] 朱维维 肖红 施楣梧. 超临界二氧化碳流体辅助下的纺织品整理技术研究进展[J]. 纺织学报, 2017, 38(11): 177-184.
[6] 余莹莹 邢铁玲 盛家镛 陈国强 刘雅光 田驰. 柞蚕彩丝的结构和性能[J]. 纺织学报, 2015, 36(04): 16-19.
[7] 张小英. 土壤填埋降解后丝素纤维的微观结构和力学性能[J]. 纺织学报, 2008, 29(2): 7-10.
[8] 高春梅;孟彦宾;奚旦立. PVDF/PVC膜化学稳定性研究[J]. 纺织学报, 2008, 29(1): 17-21.
[9] 王成.;林红;路艳华;陈宇岳. 经纳米壳聚糖处理的桑蚕丝纤维聚集态结构[J]. 纺织学报, 2007, 28(9): 1-3.
[10] 谢瑞娟;李明忠.;朱美男;严明. 干燥温度对丝胶膜结构的影响[J]. 纺织学报, 2007, 28(7): 15-18.
[11] 许云辉;林红;陈宇岳. 选择性氧化棉纤维的聚集态结构[J]. 纺织学报, 2006, 27(11): 1-5.
[12] 胡凤霞;张健;盛家镛. 新型蚕丝材料的纤维取向结构[J]. 纺织学报, 2005, 26(1): 33-35.
[13] 林红;陈宇岳. 蚕丝纤维经钙盐处理后的结构与性能[J]. 纺织学报, 2004, 25(02): 21-23.
[14] 管新海;周舜华;戴建平;王勋忠. 涤纶细旦异形长丝聚集态结构和性能的研究[J]. 纺织学报, 2003, 24(02): 112-113.
[15] 胡风霞;陈宇岳;盛家镛. 不同纤度桑蚕膨松丝的聚集态结构研究[J]. 纺织学报, 2002, 23(02): 63-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!