纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 118-123.doi: 10.13475/j.fzxb.20190100606

• 服装工程 • 上一篇    下一篇

蒸汽暴露条件对织物热防护性能的影响

邱浩1, 苏云1,2, 王云仪1,2,3()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    3.同济大学 上海国际设计创新研究院, 上海 200080
  • 收稿日期:2019-01-07 修回日期:2019-04-11 出版日期:2020-01-15 发布日期:2020-01-14
  • 通讯作者: 王云仪
  • 作者简介:邱浩(1992—),男,硕士生。主要研究方向为服装舒适性与功能设计。
  • 基金资助:
    国家自然科学基金面上项目(51576038);上海市自然科学基金项目(17ZR1400500)

Influence of steam exposure condition on thermal protective performance of fabrics

QIU Hao1, SU Yun1,2, WANG Yunyi1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai International Institute of Design and Innovation, Tongji University, Shanghai 200080, China
  • Received:2019-01-07 Revised:2019-04-11 Online:2020-01-15 Published:2020-01-14
  • Contact: WANG Yunyi

摘要:

为评价蒸汽压力、蒸汽与人体相对距离等条件对织物中热湿传递的作用规律,在蒸汽暴露条件下,测量不同蒸汽压力与喷射距离时织物的热防护性能,分析织物内储水量、蒸汽渗透量与热防护性能之间的关系,并探究蒸汽压力对储水量、渗透量的影响规律。结果表明:蒸汽暴露条件下,增大蒸汽压力与减少喷射距离能够降低织物的隔热性能,明显影响织物蒸汽热防护性能;织物透气性与皮肤二级烧伤时间呈显著负相关关系;另外,储水量、渗透量与蒸汽压力呈现正相关,且分别与织物的回潮率和透气性呈现正相关;降低水分吸收和减少蒸汽渗透是提高织物热防护性能的重要因素。

关键词: 热防护用织物, 热防护性能, 蒸汽压力, 喷射距离, 二级烧伤时间

Abstract:

Aiming to evaluate the effects of steam pressure and distance between hot steam and human body on thermal and moisture transfer of fabrics, this study was carried out to characterize thermal protective performance of fabrics under different steam pressures and jet distances. The relationship between water storage, steam permeability and thermal protective performance under the steam heat exposure condition was analyzed, and the influence of steam pressure on water storage and steam permeability was explored. The research findings indicate that increasing steam pressure and reducing jet distance can both decrease the thermal insulation, and evidently reduce the thermal protective performance of fabrics under steam exposure environment. Air permeability of fabric has a significant negative correlation with second degree burn time. In addition, both water storage and steam permeability are positively correlated with steam pressure, also with fabric's moisture regain and air permeability. It is concluded that the decrease of water absorption and steam penetration determine thermal protective performance of fabrics.

Key words: fabric for thermal protective, thermal protective performance, steam pressure, jet distance, second degree burn time

中图分类号: 

  • TS941.73

表1

实验织物的基本参数"

织物编号 纤维成分 组织结构 面密度/
(g·m-2)
厚度/mm 透气性/
(mm·s-1)
标准
回潮率/%
饱和含
水量/g
F1 芳纶1414 斜纹 210 0.66 124.91 3.53 3.13
F2 芳纶1414 平纹 150 0.53 649.63 3.63 6.23
F3 50%芳纶1313,50%芳纶1414 斜纹 210 0.54 153.60 3.20 1.25
F4 50%芳纶1313,50%纤维素纤维 平纹 150 0.33 608.47 2.88 0.80
F5 93%芳砜纶,5%凯夫拉,2%碳纤维 斜纹 250 0.53 122.42 3.09 1.04
F6 93%芳砜纶,5%芳纶,2%碳纤维 斜纹 200 0.68 589.74 4.96 9.80
F7 98%芳砜纶,2%碳纤维 平纹 150 0.42 233.09 3.29 2.92

图1

织物正反面的热电偶位置"

图2

不同蒸汽压力时织物内的水分储存量"

表2

不同蒸汽压力时蒸汽渗透量"

织物
编号
50 kPa 100 kPa 150 kPa
渗透
量/g
标准
渗透
量/g
标准
渗透
量/g
标准
F1 0.03 0.00 0.06 0.01 0.09 0.01
F2 0.06 0.00 0.19 0.00 0.45 0.02
F3 0.04 0.01 0.06 0.01 0.11 0.00
F4 0.11 0.01 0.33 0.03 0.76 0.04
F5 0.05 0.01 0.08 0.01 0.10 0.01
F6 0.05 0.01 0.14 0.01 0.33 0.01
F7 0.04 0.01 0.09 0.00 0.16 0.00

图3

热暴露阶段织物F1正反面温度"

表3

上下传感器正反面温差"

织物
编号
上传感器 下传感器
温差/℃ 标准差 温差/℃ 标准差
F1 8.32 0.15 5.68 0.14
F2 6.64 0.68 4.35 0.10
F3 6.99 0.72 4.92 0.01
F4 5.63 0.14 4.58 0.49
F5 7.27 0.05 5.47 0.67
F6 6.30 0.50 4.43 0.18
F7 5.56 0.04 5.10 0.05

图4

不同蒸汽压力下皮肤二级烧伤时间"

图5

不同喷射距离时皮肤二级烧伤时间"

[1] YU S, STRCKFADEN M, CROWN B, et al. Garment specifications and mock-ups for protection from steam and hot water[J]. Journal of Astm International, 2012(1544):290-307.
[2] SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety & Ergonomics Jose, 2008,14(1):29-41.
doi: 10.1080/10803548.2008.11076748 pmid: 18394324
[3] MANDAL S, SONG G, GHOLAMREZA F. A novel protocol to characterize the thermal protective performance of fabrics in hot-water exposure[J]. Journal of Industrial Textiles, 2015,46(1):279-291.
[4] WANG M, LI X, LI J, et al. A new approach to quantify the thermal shrinkage of fire protective clothing after flash fire exposure[J]. Textile Research Journal, 2016,86(6):580-592.
[5] CHAKRABORTY S. Thermal protective performance of clothing exposed to radiant heat[J]. Journal of the Textile Institute, 2015,106(12):1388-1393.
[6] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety & Ergonomics Jose, 2004,10(3):239-245.
pmid: 15377408
[7] DESRUELLE A V, SCHMID B. The steam laboratory of the institut de médecine navale du service de santé des armées: a set of tools in the service of the French navy[J]. European Journal of Applied Physiology, 2004,92(6):630-635.
pmid: 15205957
[8] SUMIT M, SONG G. Characterization of protective textile material for thermal hazard [C]//Proceedings of Fiber Society 2011 spring conference. Hong Kong:[s.n.], 2011: 23-25.
[9] SU Y, LI J. Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure[J]. Journal of Industrial Textiles, 2016,47(5):853-869.
[10] SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fibers & Polymers, 2017,18(3):582-589.
[11] SU Y, LI J. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation[J]. Measurement Science & Technology, 2016,27(12):1-9.
[12] ABBOTT N J, SCHULMAN S. Protection from fire: nonflammable fabrics and coatings[J]. Journal of Industrial Textiles, 1976,6(1):48-64.
[13] ORTEGA J, LEWIS J P, SANKEY O F. First principles simulations of fluid water: the radial distribution functions[J]. Journal of Chemical Physics, 1997,106(9):3696-3702.
[14] OLDERMAN G M. Liquid repellency and surgical fabric barrier properties[J]. Engineering in Medicine, 1984,13(1):35-43.
doi: 10.1243/emed_jour_1984_013_009_02 pmid: 6538521
[15] BARKAR R L, GUERTH-SCHACHER C, GRIMES R V, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006,76(1):27-31.
[16] SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000,70(7):567-573.
[17] HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016,86(3):235-244.
[1] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[2] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[3] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[4] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[5] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[6] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[7] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[8] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[9] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[10] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[11] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[12] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
[13] 苏云 李俊. 火灾环境下防水透气层对消防服热湿防护性能的影响[J]. 纺织学报, 2017, 38(02): 152-158.
[14] 张梦莹 苗勇 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(06): 171-176.
[15] 马春杰 崔志英 . 光湿复合老化对消防服用织物性能的影响[J]. 纺织学报, 2015, 36(09): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!