纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 45-49.doi: 10.13475/j.fzxb.20190203206
SU Yuheng1(), KONG Fanrong1, YAN Guangsong1,2
摘要:
为研究短纤维纱条中纤维的排列状态与纱条截面纤维根数分布不匀的关系,采用几何概率方法建立了等分区间内纤维左头端数分布与纱条截面纤维根数的期望之间的数学模型,并定义了表征纱条中纤维排列状态的参数。运用蒙特卡罗方法模拟了纱条截面根数不匀随排列参数变化的关系曲线。结果表明:短纤维纱条截面纤维根数的CV值与纱条中短纤维排列参数呈负线性关系,与纤维长度分布和模拟区间大小的划分无关;且当排列参数接近1时,即纤维左头端数在所划分区间中为固定值时,纱条截面纤维根数不匀最低,而当排列参数趋向于0时,即纤维左头端数在所划分区间中呈泊松分布时则不匀最大。
中图分类号:
[1] |
SPENCER-SMITH J L, TODD REVIEWED HAC. A time series met with in textile research[J]. Supplement to the Journal of the Royal Statistical Society, 1941,7(2):131-145.
doi: 10.2307/2983660 |
[2] | MARTINDALE J G. A new method of measuring the irregularity of yarns with some observations on the origin of irregularitier in worsted slivers and yarns[J]. Journal of the Textile Institute, 1945,36:35-47. |
[3] | SUDARSANA RAO J. A mathematical model for the ideal silver and its applications to the theory of roller drafting[J]. Journal of the Textile Institute, 1961,52:570-600. |
[4] | BROWN G H, NHAN G Ly. Statistics for the number of fiber ends in a segment of a random assembly of aligned fibers[J]. Textile Research Journal, 1985: 206-210. |
[5] |
ZEIDMAN M I, SUH M W, BATRA S K. A new perspective on yarn unevenness: components and determinants of general unevenness[J]. Textile Research Journal, 1990,60(1):1-6.
doi: 10.1177/004051759006000101 |
[6] |
CHERKASSKY A. Discrete-event simulation model of roll-drafting process[J]. Journal of the Textile Institute, 2010,102(12):1044-1058.
doi: 10.1080/00405000.2010.531950 |
[7] |
YAN G, ZHU J, YU C. A new approach to theoretical yarn unevenness: a binomial distribution model[J]. Journal of the Textile Institute, 2010,101(8):753-757.
doi: 10.1080/00405000903024199 |
[8] | 张弘强, 胡远波, 姜展, 等. 生条中纤维左头端的分布[J]. 纺织学报, 2016,37(5):28-31. |
ZHANG Hongqing, HU Yuanbo, JIANG Zhan, et al. Distribution of fiber left ends in card sliver[J]. Journal of Textile Research, 2016,37(5):28-31. | |
[9] |
JIAN Zhan. Simulation on fiber random arrangement in the yarn[J]. Journal of the Textile Institute, 2014,105(12):1312-1318.
doi: 10.1080/00405000.2014.891685 |
[10] | 林倩, 严广松, 郁崇文. 棉纤维长度分布密度函数的非参数核估计[J]. 纺织学报, 2008,29(11):22-25. |
LIN Qian, YAN Guangsong, YU Chongwen. Non-parameter kernel estimation of density function of cotton fiber length[J]. Journal of Textile Research, 2008,29(11):22-25. |
[1] | 张弘强 胡远波 姜展 匡雪琴 郁崇文. 生条中纤维左头端的分布[J]. 纺织学报, 2016, 37(05): 28-31. |
[2] | 严广松;朱进忠;郁崇文. 基于纤维排列参数的纱线不匀预测[J]. 纺织学报, 2008, 29(12): 25-29. |
[3] | 姚杰;叶国铭;侯湘洪. 基于相空间重构的纱条不匀预测[J]. 纺织学报, 2005, 26(4): 57-58. |
[4] | 姚杰;叶国铭. 纱条不匀的混沌特性[J]. 纺织学报, 2005, 26(1): 47-48. |
[5] | 甘应进;张永宁;王建刚;陈东生. 纱条不匀灰色预测模型的建立[J]. 纺织学报, 2001, 22(01): 10-12. |
[6] | 甘应进;张永宁;王大光;陈东生. 纱条不匀预测模型的优化[J]. 纺织学报, 2000, 21(03): 50-51. |
|