纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 8-14.doi: 10.13475/j.fzxb.20181004207

• 纤维材料 • 上一篇    下一篇

氧化石墨烯掺杂TiO2改性活性炭纤维

罗佳妮, 李丽君, 张晓思, 邹汉涛(), 刘雪婷   

  1. 武汉纺织大学 新型纺织材料绿色加工及其功能化教育部重点实验室, 湖北 武汉 430200
  • 收稿日期:2018-10-23 修回日期:2019-08-09 出版日期:2020-01-15 发布日期:2020-01-14
  • 通讯作者: 邹汉涛
  • 作者简介:罗佳妮(1994—),女,硕士生。主要研究方向为功能性纺织品制备。
  • 基金资助:
    国家自然科学基金项目(51303139)

Modification of activated carbon fiber using graphene oxide doped titanium dioxide

LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao(), LIU Xueting   

  1. Key Laboratory of Green Processing and Functional Textile Materials,Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2018-10-23 Revised:2019-08-09 Online:2020-01-15 Published:2020-01-14
  • Contact: ZOU Hantao

摘要:

为更好地解决废水污染的问题,针对活性炭纤维(ACF)改性进行了研究。以活性炭纤维为基体,采用溶胶凝胶法制备氧化石墨烯(GO)掺杂二氧化钛(TiO2)的溶液,通过浸渍提拉法实现负载,制备了GO掺杂TiO2的活性炭纤维。借助红外光谱、拉曼光谱、扫描电子显微镜、X射线衍射对其微观结构和表面形态进行表征和分析,并探讨了改性ACF的吸附动力学,以及GO对其可见光光催化降解性能的影响。结果表明:制备的GO-TiO2/ACFs中TiO2主要由锐钛矿相组成,GO的掺杂可抑制TiO2晶体的生长和团聚,TiO2的晶粒尺寸从15.7 nm降为8.1 nm。与TiO2/ACFs相比,少量添加GO的GO-TiO2/ACFs具有更优异的可见光吸附性能,对亚甲基蓝的去除率从65%增至85%,其吸附相比准一级动力学模型更符合准二级动力学模型,属单分子吸附。

关键词: 活性炭纤维, 二氧化钛, 氧化石墨烯, 光催化性能, 溶胶凝胶法

Abstract:

In order to better tackle wastewater pollution, activated carbon fiber was modified to improve adsorption performance. In this paper, graphene oxide (GO) doped titanium dioxide (TiO2) solution was prepared using the sol-gel method. The GO-TiO2 was successfully loaded on the activated carbon fibers (ACFs) using the immersion-pulling method. The effect of GO doping content on the performances of the modified GO-TiO2/ACFs was investigated. The microstructure and surface morphology were characterized by Fourier transform infrared spectrometer, Raman spectra, scanning electron microscope and X-ray diffraction. The photocatalytic degradation and adsorption kinetics of the modified ACFs under visible light were studied, and the results show that TiO2 in the prepared GO-TiO2/ACFs mainly consists of anatase phase. The GO doping prevented the growth and agglomeration of TiO2 crystal and resulted in smaller crystal size of TiO2, decreasing from 15.7 nm to 8.1 nm. Compared to TiO2/ACFs, the GO-TiO2/ACFs with a small content of GO demonstrated a superior adsorption performance under the visible light, and the removal rate of methylene blue increased from 65% to 85%. The GO-TiO2/ACFs adsorption results manifested better conformation with the pseudo-second-order kinetics model than the pseudo-first-order kinetics model.

Key words: activated carbon fiber, titanium dioxide, graphene oxide, photocatalytic performance, sol-gel method

中图分类号: 

  • TS102.6

图1

GO掺杂TiO2活性炭纤维的红外光谱图"

图2

GO掺杂TiO2活性炭纤维的拉曼光谱图"

图3

GO掺杂TiO2活性炭纤维的XRD谱图"

图4

GO掺杂TiO2活性炭纤维的扫描电镜照片(×1 000)"

图5

GO掺杂TiO2活性炭纤维在可见光下吸附量曲线"

表1

GO掺杂TiO2活性炭纤维可见光下吸附亚甲基蓝动力学参数"

样品名称 样品含量
(m(GO):m(Ti))
qe/
(mg·g-1)
准一级动力学方程 准二级动力学方程
k1/min-1 R2 qe1/(mg·g-1) k2/min-1 R2 qe2/(mg·g-1)
TiO2/ACF 0:1 0.610 0.242 0.952 0.792 2.598 0.993 2 0.618
GO-Ti700/ACF 1:700 0.822 0.176 0.885 1.058 1.562 0.995 4 0.836
GO-Ti350/ACF 1:350 0.873 0.359 0.901 1.214 1.422 0.998 5 0.885
GO/ACF 1:0 0.721 0.218 0.842 0.862 1.254 0.995 1 0.742
[1] 龙勇. 探究水污染防治过程中存在的问题及治理措施[J]. 低碳世界, 2018(7):27-28.
LONG Yong. Exploring the problems and control measures in the process of water pollution preven-tion[J]. Low Carbon World, 2018 (7):27-28.
[2] 李万周. 水资源保护及面源污染水治理措施的探析[J]. 水能经济, 2016(1):223-224.
LI Wanzhou. Analysis on water resources protection and non-point source pollution water control measures[J]. Water Energy Economy, 2016(1):223-224.
[3] 张余. 论城市水污染的防治技术及发展策略[J]. 科学技术创新, 2018(4):47-48.
ZHANG Yu. On the prevention technology and development strategy of urban water pollution[J]. Science and Technology Information, 2018(4):47-48.
[4] 徐莹. 高级氧化法耦合MBR处理醛类废水的研究[D]. 上海:华东理工大学, 2011: 8-41.
XU Ying. Study on the treatment of aldehyde wastewater by advanced oxidation coupled with MBR[D]. Shanghai: East China University of Science and Technology, 2011: 8-41.
[5] 程玉良. 活性炭材料的改性及其应用[J]. 中国科技信息, 2005,2(19):66-66.
CHENG Yuliang. Modification of activated carbon mateials and its application[J]. China Science and Technology Information, 2005,2(19):66-66.
[6] 易牡丹. 废旧电路板真空裂解炭制备活性炭的研究[D]. 长沙:中南大学, 2012: 11-26.
YI Mudan. Study on preparation of activated carbon by vacuum cracking of charcoal with waste circuit board[D]. Changsha: Central South University, 2012: 11-26.
[7] 吴倩. 纤维素、PAN基活性炭纤维的制备及其性能研究[D]. 武汉:武汉纺织大学, 2016: 3-39.
WU Qian. Preparation and properties of cellulose and PAN-based activated carbon fibers[D]. Wuhan: Wuhan Textile University, 2016: 3-39.
[8] 昂源, 贺奎, 董全霄, 等. 锌掺杂二氧化钛的制备及其催化降解亚甲基蓝[J]. 稀有金属材料与工程, 2016 (s1):360-364.
ANG Yuan, HE Kui, DONG Quanxiao, et al. Preparation of zinc-doped titanium dioxide and its catalytic degradation of methylene blue[J]. Rare Metal Materials and Engineering, 2016(s1):360-364.
[9] 孔黎明, 张婷, 王佩德, 等. 活性炭纤维吸附石化废水中苯酚的吸附平衡及动力学[J]. 化工学报, 2015,66(12):4874-4882.
KONG Liming, ZHANG Ting, WANG Peide, et al. Equilibrium and kinetics of phenol adsorption from petrochemical wastewater with activated carbon fiber[J]. CIESC Journal, 2015,66(12):4874-4882.
[10] 陶玥, 张峰, 陈思宇, 等. 载银活性炭纤维的结构表征与抗菌性能研究[J]. 纺织导报, 2014(12):47-50.
TAO Yue, ZHANG Feng, CHEN Siyu, et al. Structural characterization and antibacterial properties of the silver loaded activated carbon fiber[J]. China Textile Leader, 2014(12):47-50.
[11] 朱舜, 姚玉元, 林启松, 等. 活性炭纤维负载金属铂的制备及催化氧化甲醛[J]. 纺织学报, 2014,35(2):1-5.
ZHU Shun, YAO Yuyuan, LIN Qisong, et al. Catalytic oxidation of formaldehyde by activated carbon fibers supported platinum[J]. Journal of Textile Research, 2014,35(2):1-5.
[12] LIU R F, LI W B, PENG A Y. A facile preparation of TiO2/ACF with Csbnd Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal[J]. Applied Surface Science, 2018,427:608-616.
[13] CHEN H, DU Y, LU Q, et al. Microwave-assisted rapid synjournal of Mn3O4/ACF hybrid for high efficient As(V) removal[J]. Chemical Engineering Research & Design, 2017,674:399-405.
[14] 李国亭, 冯艳敏, 柴晓琪, 等. 镧改性活性炭纤维高效吸附去除对苯醌[J]. 环境工程学报, 2016,10(4):1638-1644.
LI Guoting, FENG Yanmin, CHAI Xiaoqi, et al. Efficient adsorptive removal of p-benzoquinone by lanthanum modified activated carbon fibre[J]. Chinese Journal of Environmental Engineering, 2016,10(4):1638-1644.
[15] 张世春, 刘海宁, 王世栋, 等. 活性炭纤维电极对Mg2+、Ca2+的电吸附行为研究[J]. 盐科学与化工, 2017,46(11):21-23.
ZHANG Shichun, LIU Haining, WANG Shidong, et al. Research on electrosorption for Mg2 + and Ca2 + by activated carbon fiber electrodes[J]. Journal of Salt Science and Chemical Industry, 2017,46(11):21-23.
[16] 陈明燕, 丁悦, 刘宇程 . 等. 超声辅助酸碱改性活性炭纤维DBT脱硫性能的研究[J]. 石油与天然气化工, 2018,47(1):7-12,25.
CHEN Mingyan, DING Yue, LIU Yucheng, et al. Study on DBT desulfurization performance with activated carbon fiber modified by ultrasonic assisted acid-alkali[J]. Chemical Engineering of Oil & Gas, 2018,47(1):7-12,25.
[17] OTHMAN F E C, YUSOF N, HASBULLAH H, et al. Polyacrylonitrile/magnesium oxide-based activated carbon nanofibers with well-developed microporous structure and their adsorption performance for methane[J]. Journal of Industrial & Engineering Chemistry, 2017,51:281-287.
[18] DINCER K, WAISI B, ÖNAL G, et al. Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer[J]. Synthetic Metals, 2018,237:16-22.
[19] BANERJEE S, PILLAI S C, FALARAS P, et al. New insights into the mechanism of visible light photocata-lysis[J]. Journal of Physical Chemistry Letters, 2014,5(15):2534-2555.
[20] 陈琳, 杨苏东, 王传义, 等. 二氧化钛光催化材料及其改性技术研究进展[J]. 离子交换与吸附, 2013,29(1):86-96.
CHEN Lin, YANG Sudong, WANG Chuanyi, et al. Advance in preparation and modification of photocata-lytic materials made from titanium doxide[J]. Ion Exchange and Adsorption, 2013,29(1):86-96.
[21] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2, photocatalyst for environmental applications[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2013,15(1):1-20.
[22] JORGE L G M, MINERVA V R, LAURA H R. Photocatalytic semiconductors[M]. London, Macmillan, 2015: 229.
[23] LAN Y, LU Y, REN Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applica-tions[J]. Nano Energy, 2013,2(5):1031-1045.
[24] BET-MOUSHOUL E, MANSOURPANAH Y, FARHADIN K, et al. TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processes[J]. Chemical Engineering Journal, 2016,283:29-46.
[25] 樊雪敏, 白春华, 李光辉, 等. 纳米二氧化钛光催化剂共掺杂的研究进展[J]. 无机盐工业, 2016,48(10):7-10.
FAN Xuemin, BAI Chunhua, LI Guanghui, et al. Research progress in co-doping modification of nano TiO2 photocatalysts[J]. Inorganic Chemicals Industry, 2016,48(10):7-10.
[26] FUIJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.
doi: 10.1038/238037a0 pmid: 12635268
[27] FRANK S N, BARD A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder[J]. Journal of American Chemical Society, 1977(99):303-304.
[28] CAREY J H, LAWRENCE J, TOSINE H M. Photodech- lorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976,16(6):697-701.
doi: 10.1007/BF01685575 pmid: 828069
[29] ETHERI V, VALENTIN C D, SCHNEIDER J, et al. Visiblelight activation of TiO2 photocatalysts: advances in theory and experiments[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015(5):1-9.
[30] 张莹, 燕宁宁, 朱忠其, 等. Ag-TiO2光催化剂的制备、性能及机理研究[J]. 功能材料, 2013,44(2):172-176.
ZHANG Ying, YAN Ningning, ZHU Zhongqi, et al. Preparation,properties and mechanism of Ag-TiO2 photocatalyst[J]. Journal of Functional Materials, 2013,44(2):172-176.
[31] 吴苗苗, 李洛阳, 刘佳昊, 等. Ti02/ACF复合光催化材料研究进展[J]. 功能材料, 2017,48(10):10001-10008.
WU Miaomiao, LI Mingyang, LIU Jiahao, et al. Progress in research of TiO2/ACF composite photocatalytic materials[J]. Journal of Functional Materials, 2017,48(10):10001-10008.
[32] 王中华, 刘明源, 袁鹰, 等. TiO2/ACF光催化降解甲基橙废水性能研究[J]. 化工新型材料, 2016(12):177-179.
WANG Zhonghua, LIU Mingyuan, YUAN Ying, et al. Study on photocatalytic activity of TiO2-loaded activated carbon fiber for degradation of methyl orange[J]. New Chemical Materials, 2016(12):177-179.
[33] SMARZEWSKA S, MIEKOS E, GUZIEJEWSKI D, et al. Graphene oxide activation with a constant magnetic field[J]. Analytica Chimica Acta, 2018,1011:35-39.
doi: 10.1016/j.aca.2018.01.051 pmid: 29475483
[34] LINLEY S, LIU Y Y, PTACEK C J, et al. Recyclable graphene oxide-supported titanium dioxide photocatalysts with tunable properties[J]. Acs Applied Materials & Interfaces, 2014,6(7):4658-4668.
doi: 10.1021/am4039272 pmid: 24593830
[35] WANG P, WANG J, WANG X, et al. One-step synjournal of easy-recycling TiO2-rGO nanocomposite photoca-talysts with enhanced photocatalytic activity[J]. Applied Catalysis B Environmental, 2013,132(12):452-459.
[36] WANG G, FENG W, ZENG X, et al. Highly recoverable TiO2-GO nanocomposites for stormwater disinfection[J]. Water Research, 2016,94:363-370.
doi: 10.1016/j.watres.2016.02.067 pmid: 26991482
[37] ZHEN Q, GAO L, SUN C, et al. Honeycomb-like TiO2@GO nanocomposites for the photodegradation of oxytetracycline[J]. Materials Letters, 2018,228(1):318-321.
[38] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Using graphene/TiO2nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity[J]. Cellulose, 2014,21(5):3813-3827.
[39] 潘卉, 赵甜, 张予东, 等. 氧化钛/氧化石墨纳米复合材料的制备、表征及性能[J]. 物理化学学报, 2013,29(3):660-666.
PAN Hui, ZHAO Tian, ZHANG Yudong, et al. Preparation, characterization and properties of titania/graphite oxide nanocomposite[J]. Acta Physico-Chimica Sinica, 2013,29(3):660-666.
[40] RAGUPATHY S, RAGHU K, PRABU P. Synjournal and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015,138:314-320.
[41] 胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018,35(7):1691-1699.
HU Xiaoyu, JIANG Qiuran, WEI Yi, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica, 2018,35(7):1691-1699.
[42] LUO Q, BAO L, WANG D, et al. Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene[J]. The Journal of Physical Chemistry C, 2012,116(49):25806-25815.
[43] 陈龙. 载铁活性炭纤维的制备及其用于Fenton体系降解罗丹明B和除氟的研究[D]. 武汉:武汉理工大学, 2014: 5-46
CHEN Long. Preparation of Fe-modified activated carbon fiber and its applications for Fenton degradation of Rhodamine B and adsorption of fluoride[D]. Wuhan: Wuhan University of Technology, 2014: 5-46.
[1] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[2] 何雪梅, 冒海燕, 蔡露. 壳聚糖基杂化气凝胶对活性染料的吸附性能[J]. 纺织学报, 2021, 42(02): 148-155.
[3] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[4] 陈文豆, 张辉, 陈天宇, 武海良. 二氧化钛水热改性涤/棉混纺织物的自清洁性能[J]. 纺织学报, 2020, 41(07): 122-128.
[5] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[6] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[7] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[8] 钱怡帆, 周堂, 张礼颖, 刘万双, 凤权. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(05): 8-14.
[9] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167-173.
[10] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
[11] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能[J]. 纺织学报, 2020, 41(01): 102-109.
[12] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/氧化石墨烯纤维的制备及其力学性能和吸附性能[J]. 纺织学报, 2020, 41(01): 15-20.
[13] 苗苗, 王晓旭, 王迎, 吕丽华, 魏春艳. 氧化石墨烯接枝聚丙烯非织造布的制备及其抗静电性[J]. 纺织学报, 2019, 40(11): 125-130.
[14] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[15] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!