纺织学报 ›› 2020, Vol. 41 ›› Issue (01): 88-95.doi: 10.13475/j.fzxb.20190203308

• 染整与化学品 • 上一篇    下一篇

亚麻废纱制备纤维素基絮凝材料及其混凝工业废水性能

陈冬芝1(), 杨晓刚1, 陈艳霞1, 刘琳1, 陈彬2, 崔科丛1, 张勇1,3   

  1. 1.浙江理工大学, 浙江 杭州 310018
    2.天津市昌维生物科技有限公司, 天津 300300
    3.华南理工大学 制浆造纸工程国家重点实验室, 广东 广州 510640
  • 收稿日期:2019-02-18 修回日期:2019-05-29 出版日期:2020-01-15 发布日期:2020-01-14
  • 作者简介:陈冬芝(1961—),女,高级实验师。主要研究方向为纺织品后整理技术。E-mail:dzchen@zstu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(61571002);浙江省公益技术应用研究项目(2017C31034);浙江省基础公益研究计划项目(LGF18C160002);制浆造纸工程国家重点实验室开放基金项目(201758)

Study on cellulose-based flocculant from flax yarn waste and its flocculation performance in treating industrial wastewater

CHEN Dongzhi1(), YANG Xiaogang1, CHEN Yanxia1, LIU Lin1, CHEN Bin2, CUI Kecong1, ZHANG Yong1,3   

  1. 1. Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Tianjin Changwei Biotechnology Co., Ltd., Tianjin 300300, China
    3. State Key Laboratory of Pulp and Paper Engineering,South China University of Technology, Guangzhou, Guangdong 510640, China
  • Received:2019-02-18 Revised:2019-05-29 Online:2020-01-15 Published:2020-01-14

摘要:

为提升商业絮凝剂的絮凝效率及环境友好性,以亚麻废纱纤维素(FC)为基础原料,接枝聚丙烯酰胺(PAM),优化制备亚麻废纱纤维素基絮凝材料(FC-g-PAM),部分替代商业聚丙烯酰胺。借助红外光谱仪、场发射扫描电子显微镜、有机元素分析仪、X射线衍射仪、热重分析仪对FC-g-PAM的表观形貌和化学结构进行分析与表征,并考查其生物可降解性能,研究FC-g-PAM混凝处理印染、造纸和机械加工废水性能。结果表明:FC-g-PAM最优制备工艺为反应温度80 ℃、过硫酸铵用量0.30 g/g、PAM用量0.25 g/g、FC质量分数6%;FC-g-PAM热稳定性能优于FC,90 d生物降解率达68.5%;印染废水经FC-g-PAM混凝处理后浊度为17 NTU、色度为126倍、悬浮物含量为36 mg/L、CODCr值为372 mg/L、BOD5值为132 mg/L,混凝效果优于商业PAM。

关键词: 亚麻废纱, 纤维素基絮凝材料, 混凝沉淀, 印染废水, 造纸废水, 机械加工废水

Abstract:

In order to improve the flocculation efficiency and environmental friendliness of commercial flocculants, flax waste cellulose (FC) was grafted with polyacrylamide (PAM) to prepare the FC-g-PAM for partial replacement of the commercial PAM. The morphology and chemical structure of the FC-g-PAM were characterized by FT-IR, field emission scanning electron microscopy, organic element analyzer, X-ray diffractometer and thermogravimetric analysis. Its biodegradability was also investigated. The flocculation performance of the FC-g-PAM in treating wastewater from dyeing, papermaking and mechanical processing were studied. The results showed that the optimal synthesis conditions for preparing FC-g-PAM were: reaction temperature 80 ℃,ammonium persulfate dosage 0.30 g/g, PAM dosage 0.25 g/g and FC concentration 6%. Thermal stability of FC-g-PAM was demonstrated better than that of FC and 90 d biodegradation rate reached 68.5%. After the flocculation of the FC-g-PAM, the turbidity of treated dyeing wastewater was 17 NTU, chromaticity at 126, supended matter content at 36 mg/L, CODCr at 372 mg/L, BOD5 at 132 mg/L. All these indices of FC-g-PAM indicate better flocculation performance than those of the commercial PAM.

Key words: flax yarn waste, cellulose-based flocculant, flocculation, dyeing wastewater, papermaking wastewater, mechanical processing wastewater

中图分类号: 

  • TS193.2

表1

正交试验因素水平表"

水平 A
反应温度/℃
B
APS用量/
(g·g-1)
C
PAM用量/
(g·g-1)
D
FC质量分数/
%
1 60 0.10 0.25 2.0
2 70 0.20 0.50 4.0
3 80 0.30 0.75 6.0

表2

正交试验设计与极差分析"

序 号 A B C D 浊度T/NTU
1 1 1 1 1 6.35
2 1 2 2 2 7.88
3 1 3 3 3 7.45
4 2 1 2 3 9.00
5 2 2 3 1 12.2
6 2 3 1 2 5.28
7 3 1 3 2 8.03
8 3 2 1 3 4.10
9 3 3 2 1 6.90
k1 7.227 7.793 5.243 8.467
k2 9.727 8.093 7.927 7.063
k3 6.343 6.543 9.210 6.850
R 3.384 1.550 3.967 1.617

图1

FC-g-PAM/ CuSO4混合溶液吸光值与CuSO4溶液体积的关系"

图2

FC、PAM和FC-g-PAM的FT-IR谱图"

图3

FC、溶解FC和FC-g-PAM的FESEM照片"

图4

元素分析结果"

图5

FC和FC-g-PAM的TGA图谱"

图6

FC、PAM和FC-g-PAM溶液的Zeta电位"

图7

PAM和FC-g-PAM的90 d生物降解率"

表3

印染废水混凝处理前后水质变化"

水质种类 浊度/
NTU
色度/
SS质量浓度/
(mg·L-1)
CODCr值/
(mg·L-1)
BOD5值/
(mg·L-1)
印染初始废水 820 1 700 1 510 614 227
PAM处理后 35 345 165 408 160
FC-g-PAM处理后 17 126 36 372 132

表4

造纸废水混凝处理前后水质变化"

水质种类 浊度/
NTU
色度/
SS质量浓度/
(mg·L-1)
CODCr值/
(mg·L-1)
BOD5值/
(mg·L-1)
造纸初始废水 3 465 1 900 7 254 1 200 560
PAM处理后 25 0 64 685 320
FC-g-PAM处理后 13 0 38 590 285

表5

机械加工废水混凝处理前后水质变化"

水质种类 浊度/
NTU
色度/
SS质量浓度/
(mg·L-1)
CODCr值/
(mg·L-1)
BOD5值/
(mg·L-1)
机械加工初始废水 128 70 206 140 65
PAM处理后 11 0 34 110 50
Fc-g-PAM处理后 4 0 12 90 40
[1] YANG B, XU H, YANG S N, et al. Treatment of reverse-osmosis concentrate of print and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP)[J]. Bioresource Technology, 2018,264:154-162.
doi: 10.1016/j.biortech.2018.05.063 pmid: 29803085
[2] SHRKER M S R, RAHMAN M M, KHANDAKER N. Defining the kinetics of the novel application of anaerobic acetogenics for treating textile dyeing wastewater[J]. Modeling Earth Systems and Environment, 2018,4(3):1259-1270.
doi: 10.1007/s40808-018-0470-9
[3] AWUAL M R. A novel facial composite adsorbent for enhanced copper (II) detection and removal from wastewater[J]. Chemical Engineering Journal, 2015,266:368-375.
doi: 10.1016/j.cej.2014.12.094
[4] JIANG B, ZHENG J, LIU Q, et al. Degradation of azo dye using non-thermal plasma advanced oxidation process in a circulatory airtight reactor system[J]. Chemical Engineering Journal, 2012,204:32-39.
doi: 10.1016/j.cej.2012.07.088
[5] SALINAS T, DURRULY I, ARCINIEGAS L, et al. Design and testing of a pilot scale magnetic separator for the treatment of textile dyeing wastewater[J]. Journal of Environmental Management, 2018,218:562-568.
doi: 10.1016/j.jenvman.2018.04.096 pmid: 29709824
[6] YANG Z, GAO B, WANG Y, et al. Aluminum fractions in surface water from reservoirs by coagulation treatment with polyaluminum chloride (PAC): influence of initial pH and OH-/$Al^{+}_{3}$ ratio[J]. Chemical Engineering Journal, 2011,170(1):107-113.
doi: 10.1016/j.cej.2011.03.036
[7] MEHREZ E E N, FARAG A S, ABEER A A S, et al. Cationic starch: safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth[J]. International Journal of Biological Macromolecules, 2018,116:1296-1303.
pmid: 29782981
[8] 高慧英, 张勇, 姚菊明. 亚麻废纱制备的纤维素基高吸水保水树脂及其性能[J]. 纺织学报, 2013,34(12):22-27.
GAO Huiying, ZHANG Yong, YAO Juming. Synjournal and characterization of novel cellulose-based superabsorbent resin using waste flax yarns[J]. Journal of Textile Research, 2013,34(12):22-27.
[9] QIN X Z, LU A, CAI J, et al. Stability of inclusion complex formed by cellulose in NaOH/urea aqueous solution at low temperature[J]. Carbohydrate Polymers, 2013,92(2):1315-1320.
doi: 10.1016/j.carbpol.2012.10.004
[10] CHAPPARD D, MABILLEAU G, MASSON C, et al. Metaplastic woven bone in bone metastases: a fourier-transform infrared analysis and imaging of bone qua-lity (FTIR)[J]. Morphologie, 2018,102(337):69-77.
doi: 10.1016/j.morpho.2018.02.002 pmid: 29530649
[11] ZHOU H J, ZHOU L, YANG X Y. Optimization of preparing a high yield and high cationic degree starch graft copolymer as environmentally friendly flocculant: through response surface methodology[J]. International Journal of Biological Macromolecules, 2018,118:1431-1437.
doi: 10.1016/j.ijbiomac.2018.06.155 pmid: 29972768
[12] BRIASSOULIS D. Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films[J]. Polymer Degradation and Stability, 2007,92(6):1115-1132.
doi: 10.1016/j.polymdegradstab.2007.01.024
[13] 宣肇菲, 金红, 楚翠娟, 等. 稀释倍数法测定污水色度的方法[J]. 中国环境监测, 2017,33(5):154-158.
XUAN Zhaofei, JIN Hong, CHU Cuijuan, et al. Research on the chroma measurement of sewage water by dilution multiple method[J]. Environmental Monitoring in China, 2017,33(5):154-158.
[14] ARUP M, DEBABRATA C. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydrate Polymers, 2011,86(3):1291-1299.
doi: 10.1016/j.carbpol.2011.06.030
[15] GHAZALEH H, EHSAN B, MOHAMMAD R S E. Preparation and characterization of hexagonal mesoporous silica/polyacrylamide nanocomposite capsule (PAM-HMS) for dye removal from aqueous solutioxns[J]. Journal of Molecular Liquids, 2017,238:499-507.
doi: 10.1016/j.molliq.2017.05.026
[16] PODGORBUNSKIKH E M, BYCHKOV A L, BULINA N V, et al. Disordering of the crystal structure of cellulose under mechanical activation[J]. Journal of Structural Chemistry, 2018,59(1):201-208.
doi: 10.1134/S0022476618010328
[17] WANG L, HIKIMA Y, OHSHIMA M, et al. Evolution of cellular morphologies and crystalline structures in high-expansion isotactic polypropylene/cellulose nanofiber nanocomposite foams[J]. RSC Advances, 2018,28(8):15405-15416.
[18] QI Y, THAPA K B, HOADLEY A F A. Application of filtration aids for improving sludge dewatering properties: a review[J]. Chemical Engineering Journal, 2011,171(2):373-384.
doi: 10.1016/j.cej.2011.04.060
[1] 管斌斌, 李庆, 陈灵辉, 徐宇婷, 樊增禄. 基于锆-有机骨架的印染废水中Cr( VI) 的荧光检测[J]. 纺织学报, 2021, 42(02): 122-128.
[2] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[3] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[4] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[5] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[6] 张兰河, 张明爽, 高伟围, 李正, 贾艳萍, 高敏, 凌良雄. 铝酸钴/蜂窝陶瓷催化剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2019, 40(03): 125-132.
[7] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[8] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[9] 贾艳萍 姜成 郭泽辉 张兰河 张海丰. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017, 38(08): 172-180.
[10] 刘桂萍 祝杏 王明杰 王丽多. 有机无机复合型混凝剂在印染废水中的应用[J]. 纺织学报, 2013, 34(4): 98-103.
[11] 高慧英 张勇 姚菊明. 亚麻废纱制备的纤维素基高吸水保水树脂及其性能[J]. 纺织学报, 2013, 34(12): 22-0.
[12] 龚安华, 孙岳玲. 基于混凝-吸附-氧化法的印染废水处理[J]. 纺织学报, 2012, 33(4): 95-99.
[13] 隋智慧;赵欣;刘安军. 季铵盐型高分子絮凝剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2008, 29(11): 92-96.
[14] 刘梅红. 印染废水处理技术研究进展[J]. 纺织学报, 2007, 28(1): 116-119.
[15] 吕彤;吴赞敏;曹明华;陈雷;彭晓军. 高取代度阳离子淀粉在印染废水处理中的应用[J]. 纺织学报, 2005, 26(6): 53-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!