纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 165-171.doi: 10.13475/j.fzxb.20190100507

• 综合述评 • 上一篇    下一篇

静电纺纳米纤维纱线研究进展

刘宇健, 谭晶, 陈明军, 余韶阳, 李好义(), 杨卫民   

  1. 北京化工大学 机电工程学院, 北京 100029
  • 收稿日期:2019-01-04 修回日期:2019-04-22 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 李好义
  • 作者简介:刘宇健(1995—),男,硕士生。主要研究方向为静电纺丝高效制备及应用。
  • 基金资助:
    国家自然科学基金项目(51603009)

Research progress of electrospun nanofiber yarns

LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi(), YANG Weimin   

  1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2019-01-04 Revised:2019-04-22 Online:2020-02-15 Published:2020-02-21
  • Contact: LI Haoyi

摘要:

为拓展静电纺纳米纤维的应用领域,提高静电纺纳米纤维的力学性能,对国内外近期静电纺纳米纤维纱线的研究进展进行了综述。按照加捻方式的不同,将纤维加捻方法分为流场加捻、电场加捻和机械加捻,详细介绍了几种加捻方法,并对这些方法制备的纱线的性能参数以及方法的优劣进行了对比;讨论了静电纺丝工艺参数对纱线力学性能的影响,并介绍了几种提高纳米纤维纱线力学性能的方法;对静电纺纳米纤维纱线在智能化织物、生物工程以及电子器件领域的应用进行了总结;最后针对静电纺纳米纤维纱线中存在的问题以及未来的发展趋势进行了分析。

关键词: 静电纺丝, 纳米纤维, 纱线, 智能化织物, 生物工程

Abstract:

In order to expand the application field of electrospinning nanofibers and improve the mechanical properties of electrospinning nanofibers, the recent research progress of electrospinning nanofibers yarns at home and abroad was reviewed. According to the different twisting methods, the fiber twisting methods are divided into flow field twisting, electric field twisting and mechanical twisting. Several twisting methods are introduced in detail, and the yarn performance parameters and the advantages and disadvantages of these methods are compared. The influence of electrospinning process parameters on the yarn mechanical properties is discussed, and several methods to improve the mechanical properties of nanofiber yarns are introduced. The applications of electrospinning nanofibers yarn in intelligent fabrics, bioengineering and electronic devices are summarized. Finally, the problems existing in electrospinning nanofibers yarn and the future development trend are prospected.

Key words: electrospinning, nanofiber, yarn, intelligent fabric, bioengineering

中图分类号: 

  • TS154.7

图1

静电纺纳米纤维加捻方法"

表1

纺丝工艺参数增加对纱线力学性能的影响"

工艺参数 断裂强度 断裂伸长率
溶液浓度增加 减小 先增后减
纺丝电压增加 先增后减 先增后减
流量增加 先增后减 增大
纺丝距离增加 增大 先增后减
[1] SCHIFFMAN J D, SCHAUER C L. A review: electrospinning of biopolymer nanofibers and their applications[J]. Polymer Reviews, 2008,48(2):317-352.
[2] TEO W E, RAMAKRISHNA S. A review on electrospinning design and nanofibre assemblies.[J]. Nanotechnology, 2006,17(14):R89.
doi: 10.1088/0957-4484/17/14/R01 pmid: 19661572
[3] 杨卫民, 李好义, 阎华, 等. 纳米纤维静电纺丝[M]. 北京:化学工业出版社, 2018: 26-27
YANG Weimin, LI Haoyi, YAN Hua, et al. Electrospinning of nanofiber[M]. Beijing:Chemical Industry Press, 2018: 26-27
[4] RAMAKRISHNA S, JOSE R, ARCHANA P S, et al. Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine[J]. Journal of Materials Science, 2010,45(23):6283-6312.
[5] GOPAL R, KAUR S, MA Z, et al. Electrospun nanofibrous filtration membrane[J]. Journal of Membrane Science, 2006,281(1):581-586.
[6] WANG Z, LI Z, JIANG T, et al. Ultrasensitive hydrogen sensor based on Pd()-loaded SnO2 electrospun nanofibers at room temperature[J]. Acs Applied Materials & Interfaces, 2013,5(6):2013-2021.
doi: 10.1021/am3028553 pmid: 23446459
[7] REZVANI Z, VENUGOPAL J R, URBANSKA A M, et al. A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: current state-of-the-art, emerging directions and future trends[J]. Nanomedicine Nanotechnology Biology & Medicine, 2016,12(7):2181-2200.
[8] 张艳萍, 张莉彦, 马小路, 等. 无针静电纺丝技术工业化进展[J]. 塑料, 2017(2):1-4.
ZHANG Yanping, ZHANG Liyan, MA Xiaolu, et al. Progress in industrialization of needle-free electrospinning technology[J]. Plastics, 2017(2):1-4.
[9] MALEKI H, GHAREHAGHAJI A A, MORONI L, et al. Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns[J]. Biofabrication, 2013,5(3):035014.
doi: 10.1088/1758-5082/5/3/035014 pmid: 23945472
[10] MA X, ZHANG L, TAN J, et al. Continuous manufacturing of nanofiber yarn with the assistance of suction wind and rotating collection via needleless melt electrospinning[J]. Journal of Applied Polymer Science, 2017,134(20):44820.
[11] BOLAND E, WNEK G, SIMPSON D, et al. Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning[J]. Journal of Macromolecular Science: Part A - Chemistry, 2001,38(12):13.
[12] 马小路, 张莉彦, 何万林, 等. 无针熔体电纺PLA纳米纤维捻线的制备[J]. 塑料, 2017(2):13-16.
MA Xiaolu, ZHANG Liyan, HE Wanlin, et al. Preparation of needle-free melt electrospun PLA nanofibers twist[J]. Plastics, 2017(2):13-16.
[13] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique.[J]. Biotech Adv, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004
[14] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science & Technology, 2003,63(15):2223-2253.
[15] SHUAKAT M N, LIN T. Recent developments in electrospinning of nanofiber yarns[J]. Journal of Nanoscience & Nanotechnology, 2014,14(2):1389.
doi: 10.1166/jnn.2014.9197 pmid: 24749431
[16] LEVITT A S, VALLETT R, DION G, et al. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns[J]. Journal of Applied Polymer Science, 2018,135:46404.
[17] DALTON P D, KLEE D, MÖLLER M. Electrospinning with dual collection rings[J]. Polymer, 2005,46(3):611-614.
[18] YAN H, LIU L, ZHANG Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers[J]. Materials Letters, 2011,65(15/16):2419-2421.
[19] DABIRIAN F, HOSSEINI Y, HOSSEINIRAVANDI S A. Manipulation of the electric field of electrospinning system to produce polyacrylonitrile nanofiber yarn[J]. Journal of the Textile Institute Proceedings & Abstracts, 2007,98(3):237-241.
[20] HAJIANI F, JEDDI A A A . An investigation on the effects of twist on geometry of the electrospinning triangle and polyamide 66 nanofiber yarn strength[J]. Fibers & Polymers, 2012,13(2):244-252.
[21] TEO W E, GOPAL R, RAMASESHAN R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007,48(12):3400-3405.
doi: 10.1016/j.polymer.2007.04.044
[22] YOUSEFZADEH M, LATIFI M, WEE-EONG T, et al. Producing continuous twisted yarn from well-aligned nanofibers by water vortex[J]. Polymer Engineering & Science, 2011,51(2):323-329.
[23] 马小路. 聚合物熔体微分静电纺丝纳米捻线制备研究[D]. 北京:北京化工大学, 2017: 10-11.
MA Xiaolu. Study on preparation of polymer melt differential electrospinning nanotwist[D]. Beijing: Beijing University of Chemical Technology, 2017: 10-11.
[24] 钟祥烽, 李好义, 陈宏波, 等. 内锥面喷头熔体静电纺丝工艺参数对纤维直径的影响[J]. 塑料, 2014,43(3):89-93.
ZHONG Xiangfeng, LI Haoyi, CHEN Hongbo, et al. Influence of process parameters on fiber diameter in melt electrospinning with inner cone nozzle[J]. PLASTICS, 2014,43(3):89-93.
[25] KO F K, GOGOTSI Y, ALI A A, et al. Electrospinning of continuous carbon nanotube filled nanofiber yarns[J]. Advanced Materials, 2003,15(14):1161-1165.
[26] 谭耀红, 刘呈坤, 毛雪. 静电纺制备定向纳米纤维集合体的研究现状[J]. 高分子材料科学与工程, 2018,34(11):183-190.
TAN Yaohong, LIU Chengkun, MAO Xue. Research status of electrospun directional nanofibers aggre-gates[J]. Polymer Materials Science & Engineering, 2018,34(11):183-190.
[27] ZHOU F, GONG R. Manufacturing technologies of polymeric nanofibres and nanofibre yarns[J]. Polymer International, 2010,57(6):837-845.
[28] 肖婉红, 曾泳春. 静电纺丝工艺参数对纤维直径影响的研究:实验及数值模拟[J]. 东华大学学报(自然科学版), 2009,35(6):632-638.
XIAO Wanhong, ZENG Yongchun. Effects of parameters on fiber diameter in electrospinning: experimental and numerical simulation[J]. Journal of Donghua Univer-sity(Natural Sciences Edition), 2009,35(6):632-638.
[29] WANG Xiaona, XU Yang, WEI Qufu, et al. Study on technological parameters effecting on fiber diameter of melt electrospinning[J]. Advanced Materials Research, 2011,332-334:1550-1556.
[30] 吴韶华, 张彩丹, 覃小红, 等. 静电纺取向纳米纤维束及纳米纤维纱线的研究进展[J]. 高分子材料科学与工程, 2014,30(6):182-186.
WU Shaohua, ZHANG Caidan, QIN Xiaohong, et al. Advances in electrospinning oriented nanofibre bundles and nanofibre yarns[J]. Polymer Materials Science & Engineering, 2014,30(6):182-186.
[31] SMIT E, BÜTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers[J]. Polymer, 2005,46(8):2419-2423.
[32] ABBASIPOUR M, KHAJAVI R, ABBASIPOUR M. Nanofiber bundles and yarns production by electrospinning: a review[J]. Advances in Polymer Technology, 2014,32(3):1158-1168.
[33] JALILI R, MORSHED M, RAVANDI S A H . Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers[J]. Journal of Applied Polymer Science, 2010,101(6):4350-4357.
doi: 10.1002/(ISSN)1097-4628
[34] 董振峰, 朱志国, 王锐, 等. 碳纳米管/聚合物复合体系阻燃性能的研究进展[J]. 纺织学报, 2009,30(3):136-142.
DONG Zhenfeng, ZHU Zhiguo, WANG Rui, et al. Recent development on flame retardancy of carbon nanotubes/polymer composites[J]. Journal of Textile Research, 2009,30(3):136-142.
[35] 曹伟, 宋雪梅, 王波, 等. 碳纳米管的研究进展[J]. 材料导报, 2007,21(s1):77-82.
CAO Wei, SONG Xuemei, WANG Bo, et al. Research Progress in carbon nanotube[J]. Materials Review, 2007,21(s1):77-82.
[36] YAO Li, ALEKSANDER Gora, FRANKLIN Anariba, AVINASH Baji. Enhanced tensile strength and electrical conductivity of electrospun polyacrylonitrile yarns via post-treatment[J]. Polymer Composites, 2018.
doi: 10.1002/pc.20198 pmid: 25382894
[37] LAM H, TITCHENAL N, NAGUIB N, et al. Electrospinning of carbon nanotube reinforced nanocomposite fibrils and yarns[J]. MRS Proceedings, 2003,791:51-56.
[38] SUI X, WIESEL E, WAGNER H D. Mechanical properties of electrospun PMMA micro-yarns: Effects of NaCl mediation and yarn twist[J]. Polymer, 2012,53(22):5037-5044.
doi: 10.1016/j.polymer.2012.08.062
[39] LANGLEY D, GIUSTI G, MAYOUSSE C, et al. Flexible transparent conductive materials based on silver nanowire networks: a review[J]. Nanotechnology, 2013,24(45):20.
[40] LUO H, MA Y, LI W, et al. Shape memory-enhanced water sensing of conductive polymer composites[J]. Materials Letters, 2015,161:189-192.
[41] WAN C J, LIU Y H, FENG P, et al. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates[J]. Advanced Materials, 2016,28(28):5878-5886
doi: 10.1002/adma.201600820 pmid: 27159546
[42] 夏凯伦, 蹇木强, 张莹莹. 纳米碳材料在可穿戴柔性导电材料中的应用研究进展[J]. 物理化学学报, 2016,32(10):2427-2446.
XIA Kailun, QIAN Muqiang, ZHANG Yingying. Advances in wearable and flexible conductors based on nanocarbon materials[J]. Acta Physico-Chimica Sinica, 2016,32(10):2427-2446.
[43] ZHONG W, LIU C, XIANG C, et al. Continuously producible ultrasensitive wearable strain sensor assembled with three-dimensional interpenetrating AgNW/POE nanofibrous composite yarn[J]. ACS Applied Materials & Interfaces, 2017,9(48):42058-42066.
pmid: 29115820
[44] 万振凯, 李鹏, 贾敏瑞, 等. 智能复合材料中碳纳米管纱线参数设计及其变化特征[J]. 纺织学报, 2018,39(6):58-63.
WAN Zhenkai, LI Peng, JIA Minrui, et al. Parameter design and variation characteristics of carbon nanotube yarns in intelligent composites[J]. Journal of Textile Research, 2018,39(6):58-63.
[45] KIM S H, HAINES C S, LI N, et al. Harvesting electrical energy from carbon nanotube yarn twist[J]. Science, 2017,357(6353):773.
doi: 10.1126/science.aam8771 pmid: 28839068
[46] YANG C, DENG G, CHEN W, et al. A novel electrospun-aligned nanoyarn-reinforced nanofibrous scaffold for tendon tissue engineering[J]. Colloids & Surfaces B: Biointerfaces, 2014,122:270-276.
doi: 10.1016/j.colsurfb.2014.06.061 pmid: 25064476
[47] LEE B S, KIM W S, KIM D H, et al. Fabrication of SnO2 nanotube microyarn and its gas sensing be-havior[J]. Smart Materials & Structures, 2011,20(10):105019.
[1] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[2] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[3] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/ 羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[4] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[5] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[6] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[7] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[8] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[9] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[10] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[11] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[12] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[13] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[14] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[15] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!