纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 179-186.doi: 10.13475/j.fzxb.20180900608

• 综合述评 • 上一篇    下一篇

纺织品的石墨烯耐久功能整理研究进展

常硕(), 沈加加   

  1. 嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314001
  • 收稿日期:2018-09-03 修回日期:2019-11-10 出版日期:2020-02-15 发布日期:2020-02-21
  • 作者简介:常硕(1986—),女,讲师,博士。主要研究方向为纺织品的功能整理。E-mail: changshuo211@163.com
  • 基金资助:
    浙江省纱线材料成型与复合加工技术研究重点实验室开放基金项目(MTC2019-06);浙江省纱线材料成型与复合加工技术研究重点实验室开放基金项目(MTC2020-02);浙江省高校访问学者项目(FX2018046)

Research progress of graphene durable finishing of textiles

CHANG Shuo(), SHEN Jiajia   

  1. College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
  • Received:2018-09-03 Revised:2019-11-10 Online:2020-02-15 Published:2020-02-21

摘要:

为将石墨烯更好地应用于纺织品功能整理,系统介绍了石墨烯及其衍生物赋予纺织品的多种功能及其作用机制,包括导电、紫外线防护、疏水、抗菌、阻燃等,并对纺织品的石墨烯耐久功能整理方法进行述评,包括浸渍、浸-轧-烘、黏合剂、真空过滤沉积、溶胶-凝胶、层层自组装等方法。剖析了获得耐久功能纺织品的关键因素认为,石墨烯整理剂的精确调控、织物的预处理以及合理利用基材纤维的特性等,是提高石墨烯功能纺织品耐久性的有效途径。最后,对纺织品的石墨烯耐久功能整理的工业化前景提出了展望与建议。

关键词: 石墨烯, 纺织品, 功能整理, 耐久性, 功能纺织品

Abstract:

With the aim to apply graphene in the functional finishing of textiles, the comprehensive review on the diverse functionalities of textiles and the corresponding mechanism was carried out, such functionalities as electrical conductivity, UV protection, hydrophobicity, anti-bacteria, and flame retardancy. The approaches used to achieve permanent finishing of textiles with graphene or its derivatives were reviewed in details, such as exhaustion, dip-pad-dry, with the help of adhesives, vacuum filtration deposition, sol-gel, and layer-by-layer assembly. To improve durability of the obtained functional fabrics, the precise regulation of graphene or its derivatives, pretreatment of fabric and the rational use of the characteristics of fibers were effective paths. Finally, the prospect towards industrialization of the textiles functional finishing with graphene was forecasted and several related suggestion was proposed.

Key words: graphene, textiles, functional finishing, durability, functional textiles

中图分类号: 

  • TS195.5
[1] 阎克路. 染整工艺与原理:上册[M]. 北京:中国纺织出版社, 2009: 236-304.
YAN Kelu. Dyeing and finishing process and principles.(1st)[M]. Beijing:China Textile & Apparel Press, 2009: 236-304.
[2] HASANBEIGI Ali, PRICE Lynn. A review of energy use and energy efficiency technologies for the textile indu-stry[J]. Renewable and Sustainable Energy Reviews, 2012,16(6):3648-3665.
[3] JOST Kristy, DION Genevieve, GOGOTSI Yury. Textile energy storage in perspective[J]. Journal of Materials Chemistry A, 2014,2(28):10776-10787.
[4] KE Qingqing, WANG John. Graphene-based materials for supercapacitor electrodes: a review[J]. Journal of Materiomics, 2016,2(1):37-54.
[5] BANDODKAR Amay J, WANG Joseph. Non-invasive wearable electrochemical sensors: a review[J]. Trends in Biotechnology, 2014,32(7):363-371.
doi: 10.1016/j.tibtech.2014.04.005 pmid: 24853270
[6] MA Qinglang, CHENG Hongfei, FANE Anthony G, et al. Recent development of advanced materials with special wettability for selective oil/water separation[J]. Small, 2016,12(16):2186-2202.
doi: 10.1002/smll.201503685 pmid: 27000640
[7] WANG Zijie, WANG Yu, LIU Guojun. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric[J]. Angewandte Chemie, 2016,128(4):1313-1316.
[8] ZHEN Zhen, ZHU Hongwei. Structure and properties of graphene[M]. Salt Lake City:Academic Press, 2018: 1-12.
[9] NAIR Rahul Raveendran, BLAKE Peter, GRIGORENKO Alexander N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008,320(5881):1308-1308.
doi: 10.1126/science.1156965 pmid: 18388259
[10] KIM Keun Soo, ZHAO Yue, JANG Houk, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009,457(7230):706-710.
doi: 10.1038/nature07719 pmid: 19145232
[11] LEE Changgu, WEI Xiaoding, KYSAR Jeffrey W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321(5887):385-388.
doi: 10.1126/science.1157996 pmid: 18635798
[12] BALANDIN Alexander A, GHOSH Suchismita, BAO Wenzhong, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008,8(3):902-907.
pmid: 18284217
[13] GóMEZ-NAVARRO Cristina, WEITZ R Thomas, BITTNER Alexander M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets[J]. Nano Letters, 2007,7(11):3499-3503.
doi: 10.1021/nl072090c pmid: 17944526
[14] GAN Lu, SHANG Songmin, YUEN Chun Wah Marcus , et al. Graphene nanoribbon coated flexible and conductive cotton fabric[J]. Composites Science and Technology, 2015,117:208-214.
[15] KARIM Nazmul, AFROJ Shaila, TAN Sirui, et al. Scalable Production of graphene-based wearable E-textiles[J]. ACS Nano, 2017,11(12):12266-12275.
doi: 10.1021/acsnano.7b05921 pmid: 29185706
[16] ZHOU Qianlong, YE Xingke, WAN Zhongquan, et al. A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode[J]. Journal of Power Sources, 2015,296:186-196.
[17] ZHANG Ping, ZHANG Hanzhi, YAN Casey, et al. Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors[J]. Materials Research Express, 2017,4(7):075602.
[18] BERENDJCHI Amirhosein, KHAJAVI Ramin, YOUSEFI Ali Akbar, et al. A facile route for fabricating a dye sensitized solar cell on a polyester fabric sub-strate[J]. Journal of Cleaner Production, 2017,149:521-527.
[19] REN Jiesheng, WANG Chaoxia, ZHANG Xuan, et al. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide[J]. Carbon, 2017,111:622-630.
[20] SOURI Hamid, BHATTACHARYYA Debes. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics[J]. ACS Applied Materials & Interfaces, 2018,10(24):20845-20853.
doi: 10.1021/acsami.8b04775 pmid: 29808668
[21] MOLINA J, FERNÁNDEZ J, INÉS J C, et al. Electrochemical characterization of reduced graphene oxide-coated polyester fabrics[J]. Electrochimica Acta, 2013,93:44-52.
[22] MOLINA J, ZILLE Andrea, FERNáNDEZ J , et al. Conducting fabrics of polyester coated with polypyrrole and doped with graphene oxide[J]. Synthetic Metals, 2015,204:110-121.
[23] TEXTOR Torsten, MAHLTIG Boris. A sol-gel based surface treatment for preparation of water repellent antistatic textiles[J]. Applied Surface Science, 2010,256(6):1668-1674.
[24] 凡力华, 宋伟华, 王潮霞. 紫外光还原氧化石墨烯腈纶织物抗静电性能[J]. 纺织学报, 2019,40(5):97-101.
FAN Lihua, SONG Weihua, WANG Chaoxia. Antistatic properties of UV-reduced graphene oxide acrylic fab-rics[J]. Journal of Textile Research, 2019,40(5):97-101.
[25] WANG Can, XIANG Cheng, TAN Lin, et al. Preparation of silver/reduced graphene oxide coated polyester fabric for electromagnetic interference shiel-ding[J]. RSC Advances, 2017,7(64):40452-40461.
[26] HU Xili, TIAN Mingwei, QU Lijun, et al. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties[J]. Carbon, 2015,95:625-633.
[27] TIAN Mingwei, TANG Xiaoning, QU Lijun, et al. Robust ultraviolet blocking cotton fabric modified with chitosan/graphene nanocomposites[J]. Materials Letters, 2015,145:340-343.
[28] OUADIL B, CHERKAOUI O, SAFI M, et al. Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites[J]. Applied Surface Science, 2017,414:292-302.
[29] WOO Seunghee, KIM Yang-Rae, CHUNG Taek Dong, et al. Synjournal of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide[J]. Electrochimica Acta, 2012,59:509-514.
[30] LEENAERTS O, PARTOENS B, PEETERS FM. Water on graphene: hydrophobicity and dipole moment using density functional theory[J]. Physical Review B, 2009,79(23):235440.
[31] SHIN Y J, WANG Y, HUANG H, et al. Surface-energy engineering of graphene[J]. Langmuir, 2010,26(6):3798-802.
doi: 10.1021/la100231u pmid: 20158275
[32] MOON I K, LEE J, RUOFF R S, et al. Reduced graphene oxide by chemical graphitization[J]. Nat Commun, 2010,1(6):1-6.
[33] LEE Jungsoo, YOON Jongchul, JANG Jihyun. A route towards superhydrophobic graphene surfaces: surface-treated reduced graphene oxide spheres[J]. Journal of Materials Chemistry A, 2013,1(25):7312-7315.
[34] TISSERA Nadeeka D, WIJESENA Ruchira N, PERERA J Rangana, et al. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating[J]. Applied Surface Science, 2015,324:455-463.
[35] KIM Seong Jun, SONG Wooseok, YI Yoonsik, et al. High durability and waterproofing rGO/SWCNT -fabric- based multifunctional sensors for human-motion detection[J]. ACS Applied Materials & Interfaces, 2018,10(4):3921-3928.
doi: 10.1021/acsami.7b15386 pmid: 29309113
[36] ZHU Danning, XIA Yunfei, YANG Jin, et al. One-step removal of insoluble oily compounds and water-miscible contaminants from water by underwater superoleophobic graphene oxide-coated cotton[J]. Cellulose, 2017,24(12):5605-5614.
[37] HOAI Nguyen To, SANG Nguyen Nhat, HOANG Tran Dinh. Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal[J]. Materials Science and Engineering: B, 2017,216:10-15.
doi: 10.1016/j.mseb.2016.06.007
[38] HU Wenbing, PENG Cheng, LUO Weijie, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010,4(7):4317-4323.
doi: 10.1021/nn101097v pmid: 20593851
[39] LIU Shaobin, ZENG Tingying Helen, HOFMANN Mario, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011,5(9):6971-6980.
doi: 10.1021/nn202451x pmid: 21851105
[40] ZHAO Jinming, DENG Bo, LV Min, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013,2(9):1259-1266.
doi: 10.1002/adhm.201200437 pmid: 23483725
[41] DONG Liye, HU Chuangang, SONG Long, et al. A large‐area, flexible, and flame‐retardant graphene paper[J]. Advanced Functional Materials, 2016,26(9):1470-1476.
doi: 10.1002/adfm.201504470
[42] WANG Xin, SONG Lei, YANG Hongyu, et al. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly (butylene succinate) composites[J]. Industrial & Engineering Chemistry Research, 2011,50(9):5376-5383.
[43] 朱士凤, 曲丽君, 田明伟, 等. 涤纶织物的氧化石墨烯功能整理及其防熔滴性能[J]. 纺织学报, 2017,38(2):141-145.
ZHU Shifeng, QU Lijun, TIAN Mingwei, et al. Function finishing and anti-dripping property of polyethyleneterephthalate fabric coated with graphene oxide[J]. Journal of Textile Research, 2017,38(2):141-145.
[44] KIM Minjung, JEON Inyup, SEO Jeongmin, et al. Graphene phosphonic acid as an efficient flame retar-dant[J]. ACS Nano, 2014,8(3):2820-2825.
pmid: 24575902
[45] YU Bin, SHI Yongqian, YUAN Bihe, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocompo-sites[J]. Journal of Materials Chemistry A, 2015,3(15):8034-8044.
[46] LIU Hong, DU Yang, YANG Guohai, et al. Flame retardance of modified graphene to pure cotton fabric[J]. Journal of Fire Sciences, 2018,36(2):111-128.
[47] PANDIYARASAN V, ARCHANA J, PAVITHRA A, et al. Hydrothermal growth of reduced graphene oxide on cotton fabric for enhanced ultraviolet protection applications[J]. Materials Letters, 2017,188:123-126.
[48] HE Shan, XIN Binjie, CHEN Zhuoming, et al. Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputte-ring[J]. Cellulose, 2018,25(6):3691-3701.
[49] BABAAHMADI Vahid, MONTAZER Majid, GAO Wei. Low temperature welding of graphene on PET with silver nanoparticles producing higher durable electro-conductive fabric[J]. Carbon, 2017,118:443-451.
[50] BABAAHMADI Vahid, MONTAZER Majid, GAO Wei. Surface modification of PET fabric through in-situ reduction and cross-linking of graphene oxide: towards developing durable conductive fabric coatings[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,545:16-25.
doi: 10.1016/j.colsurfa.2018.02.018
[51] WANG Guixia, BABAAHMADI Vahid, HE Nanfei, et al. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility[J]. Journal of Power Sources, 2017,367:34-41.
[52] CAO Jiliang, WANG Chaoxia. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method[J]. Applied Surface Science, 2017,405:380-388.
[53] FUGETSU Bunshi, SANO Eiichi, YU Hongwen, et al. Graphene oxide as dyestuffs for the creation of electrically conductive fabrics[J]. Carbon, 2010,48(12):3340-3345.
[54] JI Yimin, CHEN Guoqiang, XING Tieling. Rational design and preparation of flame retardant silk fabrics coated with reduced graphene oxide[J]. Applied Surface Science, 2018,474:203-210.
doi: 10.1016/j.apsusc.2018.03.120
[55] QU Lijun, TIAN Mingwei, HU Xili, et al. Functionalization of cotton fabric at low graphene nanoplate content for ultrastrong ultraviolet blocking[J]. Carbon, 2014,80:565-574.
doi: 10.1016/j.carbon.2014.08.097
[56] LIU Xin, QIN Zongyi, DOU Zhenjun, et al. Fabricating conductive poly (ethylene terephthalate) nonwoven fabrics using an aqueous dispersion of reduced graphene oxide as a sheet dyestuff[J]. RSC Advances, 2014,4(45):23869-23875.
doi: 10.1039/c4ra01645a
[57] TANG Xiaoning, TIAN Mingwei, QU Lijun, et al. Functionalization of cotton fabric with graphene oxide nanosheet and polyaniline for conductive and UV blocking properties[J]. Synthetic Metals, 2015,202:82-88.
doi: 10.1016/j.synthmet.2015.01.017
[58] KOWALCZYK Dorota, FORTUNIAK Witold, MIZERSKA Urszula, et al. Modification of cotton fabric with graphene and reduced graphene oxide using sol-gel method[J]. Cellulose, 2017,24(9):4057-4068.
doi: 10.1007/s10570-017-1389-4
[59] TIAN Mingwei, HU Xili, QU Lijun, et al. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan[J]. Applied Surface Science, 2016,377:141-148.
doi: 10.1016/j.apsusc.2016.03.183
[60] TIAN Mingwei, HU Xili, QU Lijun, et al. Versatile and ductile cotton fabric achieved via layer-by-layer self-assembly by consecutive adsorption of graphene doped PEDOT: PSS and chitosan[J]. Carbon, 2016,96:1166-1174.
doi: 10.1016/j.carbon.2015.10.080
[1] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[2] 娄娅娅, 王静, 董燕超, 王春梅. 粘胶基沸石咪唑骨架材料的制备及其对染料的脱色[J]. 纺织学报, 2021, 42(02): 142-147.
[3] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[4] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/ 磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[5] 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20.
[6] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[7] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[8] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[9] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[10] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[11] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
[12] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[13] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[14] 余钰骢, 史晓龙, 刘琳, 姚菊明. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196.
[15] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
Viewed
Full text
192
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 3 0 0 189

  From Others local
  Times 23 169
  Rate 12% 88%

Abstract
531
Just accepted Online first Issue
0 0 531
  From Others local
  Times 242 289
  Rate 46% 54%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!