纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 20-25.doi: 10.13475/j.fzxb.20190403107

• 纤维材料 • 上一篇    下一篇

聚天冬氨酸基纤维水凝胶的制备及其释药性能

李思捷, 张彩丹()   

  1. 嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314000
  • 收稿日期:2019-04-08 修回日期:2019-11-24 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 张彩丹
  • 作者简介:李思捷(2000—),女。主要研究方向为非织造材料的制备。
  • 基金资助:
    浙江省自然科学基金项目(LQ20E030014);嘉兴学院大学生创新训练项目(8517193245)

Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior

LI Sijie, ZHANG Caidan()   

  1. College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314000, China
  • Received:2019-04-08 Revised:2019-11-24 Online:2020-02-15 Published:2020-02-21
  • Contact: ZHANG Caidan

摘要:

为开发具有pH值敏感性的药物缓释体系,以pH值敏感型材料聚天冬氨酸(PASP)的中间体聚琥珀酰亚胺(PSI)和热塑性聚氨酯(TPU)为纺丝原料,以5-氟尿嘧啶为药物模型,采用同轴静电纺丝法制备皮芯结构PSI/TPU纤维膜,通过后处理制得PASP/TPU纤维水凝胶载药体系。探究纺丝参数、后处理工艺对纤维膜形貌结构、化学结构、力学性能和溶胀性能的影响,并分析了药物体外释放行为。结果表明:PSI/TPU纤维膜经交联、水解反应可形成PASP/TPU纤维水凝胶,随着同轴纺丝过程中内层TPU流速的增加,PASP/TPU纤维水凝胶的芯层变厚,力学性能增加,溶胀性能变差;PASP/TPU纤维水凝胶具有pH值敏感性,溶胀倍率随pH值升高而增加;PASP/TPU纤维水凝胶的药物体外释放速率随缓释介质pH值的不同而发生变化。

关键词: pH值敏感型材料, 纤维水凝胶, 同轴静电纺丝, 聚天冬氨酸, 药物缓释

Abstract:

To develop a sustained drug delivery system with pH sensitivity, polysuccinimide (PSI), as the intermediate of pH-sensitive polyaspartic acid (PASP), and thermoplastic polyurethane (TPU) were used to produce electro-spun membranes, with 5-fluorouracil being the model drug. The PSI/TPU fiber membrane with skin-core structure was prepared by coaxial electrospinning. Then PASP/TPU fiber hydrogel based drug-loading system was obtained by post-treatment of PSI/TPU fiber membrane. The effects of electro-spinning parameters and post-treatment on fiber membrane morphology, chemical structure, mechanical properties and swelling properties were analyzed. The drug release behavior of PASP/TPU fiber hydrogel in vitro was studied. The results show that PASP/TPU fiber hydrogel is gained by crosslinking and hydrolysis of PSI/TPU fiber membrane. With the increase of inner layer flow rate during coaxial electrospinning, the core thickness and mechanical properties of PASP/TPU fiber hydrogel increase, while the swelling ratio of PASP/TPU fiber hydrogel decreases. In addition, PASP/TPU fiber hydrogel with pH sensitivity exhibits swelling ratio increase when increasing the pH value. Drug release rate of PASP/TPU nanofiber hydrogel in vitro varies according to the pH value of release medium.

Key words: pH sensitivity material, fiber hydrogel, coaxial electrospinning, polyaspartic acid, sustained drug delivery

中图分类号: 

  • TS101.4

图1

不同内层流速下PSI/TPU纤维膜的SEM和TEM照片"

图2

不同内层流速下PASP/TPU纤维水凝胶的扫描电镜照片(×3 000)"

图3

不同纤维膜的红外光谱图"

图4

PSI交联水解生成PASP水凝胶反应示意图"

图5

不同内层流速的PSI/TPU纤维膜和纤维水凝胶的拉伸曲线"

图6

PASP/TPU纤维水凝胶不同pH值条件下的溶胀倍率变化"

图7

5-氟尿嘧啶的标准曲线"

图8

载药PASP/TPU纤维水凝胶体外释放曲线"

[1] LIU X, YANG Y, YU D G, et al. Tunable zero-order drug delivery systems created by modified triaxial electrospinning[J]. Chemical Engineering Journal, 2019,356:886-894.
[2] NOSRATI H, ADINEHVAND R, MANJILI H K, et al. Synjournal, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line[J]. Pharmaceutical Development and Technology, 2019,24(1):89-98.
doi: 10.1080/10837450.2018.1425433 pmid: 29307260
[3] KAMALY N, YAMEEN B, WU J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release[J]. Chemical Reviews, 2016,116(4):2602-2663.
pmid: 26854975
[4] JOHNSTONE T C, SUNTHARALINGAM K, LIPPARD S J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs[J]. Chemical Reviews, 2016,116(5):3436-3486.
doi: 10.1021/acs.chemrev.5b00597 pmid: 26865551
[5] ULBRICH K, HOLA K, SUBR V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies[J]. Chemical Reviews, 2016,116(9):5338-5431.
pmid: 27109701
[6] DAI H, ZHANG H, MA L, et al. Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synjournal, characterization and naringin prolonged release[J]. Carbohydrate Polymers, 2019,209:51-61.
doi: 10.1016/j.carbpol.2019.01.014 pmid: 30732825
[7] CULVER H R, CLEGG J R, PEPPAS N A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery[J]. Accounts of Chemical Research, 2017,50(2):170-178.
doi: 10.1021/acs.accounts.6b00533 pmid: 28170227
[8] GYARMATI B, VAJNA B, NEMETHY A, et al. Redox- and pH-responsive cysteamine-modified poly(aspartic acid) showing a reversible solgel tran-sition[J]. Macromolecular Bioscience, 2013,13(5):633-640.
doi: 10.1002/mabi.201200420 pmid: 23512318
[9] SATTARI S, TEHRANI A D, ADELI M. pH-responsive hybrid hydrogels as antibacterial and drug delivery systems[J]. Polymers, 2018, DOI: 10.33901-poly10060660.
doi: 10.3390/polym13030442 pmid: 33573123
[10] ZHOU M, HOU T, LI J, et al. Self-propelled and targeted drug delivery of poly(aspartic acid)/iron-zinc microrocket in the stomach[J]. Acs Nano, 2019,13(2):1324-1332.
doi: 10.1021/acsnano.8b06773 pmid: 30689352
[11] FU Q, DUAN C, YAN Z, et al. Nanofiber-based hydrogels: controllable synjournal and multifunctional applications[J]. Macromolecular Rapid Communications, 2018,39(10):1800058.
[12] FOGACA R, CATALANI L H. PVP hydrogel membranes produced by electrospinning for protein release devices[J]. Soft Materials, 2013,11(1):61-68.
[13] CAI Z, XIONG P, ZHU C, et al. Preparation and characterization of a bi-layered nano-filtration membrane from a chitosan hydrogel and bacterial cellulose nanofiber for dye removal[J]. Cellulose, 2018,25(9):5123-5137.
[14] KO H, JAVEY A. Smart actuators and adhesives for reconfigurable matter[J]. Accounts of Chemical Research, 2017,50(4):691-702.
doi: 10.1021/acs.accounts.6b00612 pmid: 28263544
[15] ZHANG C, WU S, WU J, et al. Preparation and characterization of microporous sodium poly(aspartic acid) nanofibrous hydrogel[J]. Journal of Porous Materials, 2017,24(1):75-84.
doi: 10.1007/s10934-016-0239-3
[16] HSIAO S H, YANG C P, CHEN C W, et al. Synjournal and properties of novel poly(amide-imide) s containing pendent diphenylamino groups[J]. European Polymer Journal, 2005,41(3):511-517.
doi: 10.1016/j.eurpolymj.2004.10.011
[17] TAO Z, YANG S, CHEN J, et al. Synjournal and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins[J]. European Polymer Journal, 2007,43(4):1470-1479.
[18] LIU Z, SUN Y, ZHOU X, et al. Synjournal and scale inhibitor performance of polyaspartic acid[J]. Journal of Environmental Sciences, 2011,23:153-155.
[19] SONG L, YANG K, JIANG W, et al. Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water[J]. Colloids and Surfaces B: Biointerfaces, 2012,94:341-346.
doi: 10.1016/j.colsurfb.2012.02.011 pmid: 22405471
[20] ZHAO Y, SU H, FANG L, et al. Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and pH-responsiveness properties[J]. Polymer, 2005,46(14):5368-5376.
doi: 10.1016/j.polymer.2005.04.015
[21] 赵彦生, 魏华, 刘永梅, 等. 羟化聚天冬氨酸水凝胶的制备及药物缓释性能[J]. 高分子材料科学与工程, 2011,27(3):128-131.
ZHAO Yansheng, WEI Hua, LIU Yongmei, et al. Synjournal and drug releasing properties of polyaspartic acid hydrogel with hydroxyl[J]. Polymer Materials Science and Engineering, 2011,27(3):128-131.
[1] 李树锋, 程博闻, 罗永莎, 王辉, 徐经伟. 聚丙烯腈基活性中空碳纳米纤维制备及其性能[J]. 纺织学报, 2019, 40(10): 1-6.
[2] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[3] 付译鋆 安琪 张伟 张瑜 柯惠珍. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018, 39(12): 7-12.
[4] 李树锋 刘高华 谢小军 韩永兴 张艳 程博闻. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017, 38(12): 1-6.
[5] 夏鑫 李群华 周惠敏 魏取福 张向武. 皮芯结构Sn∕C包覆碳杂化纳米纤维的制备及其在锂离子负极材料中的应用[J]. 纺织学报, 2014, 35(8): 1-0.
[6] 许云辉 王晓明 张晓丽. 大豆蛋白/复合羧酸改性棉织物的制备及其缓释效果[J]. 纺织学报, 2013, 34(6): 73-78.
[7] 刘俊雄 单小红 夏鑫. 芯壳结构碳包覆二氧化锡纳米纤维膜制备及表征[J]. 纺织学报, 2013, 34(5): 7-11.
[8] 常怀云 熊杰. 同轴静电纺丝制备聚丙烯腈多孔中空超细纤维[J]. 纺织学报, 2012, 33(11): 6-10.
[9] 蒋岩岩 秦静雯 钱伟伟 傅佳佳 王鸿博. 载药聚乳酸/丝素纳米纤维的制备及缓释性能[J]. 纺织学报, 2012, 33(11): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!