纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 39-43.doi: 10.13475/j.fzxb.20190204905

• 纤维材料 • 上一篇    下一篇

基于边界跟踪测量麻纤维横截面参数的算法研究与应用

张铮烨1, 辛斌杰2(), 邓娜1, 陈阳1, 邢文宇1   

  1. 1.上海工程技术大学 电子电气工程学院, 上海 201620
    2.上海工程技术大学 服装学院, 上海 201620
  • 收稿日期:2019-02-27 修回日期:2019-11-15 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 辛斌杰
  • 作者简介:张铮烨(1995—),男,硕士生。主要研究方向为纤维图像识别。
  • 基金资助:
    上海市自然科学基金资助项目(18ZR1416600)

Research and application of algorithm for measuring hemp fiber cross-sectional parameters based on boundary tracking

ZHANG Zhengye1, XIN Binjie2(), DENG Na1, CHEN Yang1, XING Wenyu1   

  1. 1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,Shanghai 201620, China
    2. Fashion College, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2019-02-27 Revised:2019-11-15 Online:2020-02-15 Published:2020-02-21
  • Contact: XIN Binjie

摘要:

针对在同一纤维横截面图像中难以同时测量多根纤维参数的问题,提出了一种基于边界跟踪测量麻纤维横截面参数的算法。首先利用边缘提取算法提取麻纤维的边缘,通过修改边缘提取算法的敏感度阈值获取合适的边缘检测图像,然后采用边界跟踪算法对边缘检测图像中的麻纤维进行识别和标记,利用循环标记出图像中所有的麻纤维并保存边界跟踪的路径点坐标,最后利用算法测量麻纤维的周长、面积和圆度。实验结果表明:该方法能够同时测量多根麻纤维的横截面参数;根据用于测试的标准圆的数据可知,本算法测得的麻纤维的周长偏差大约为3%,面积偏差大约为4%,数据误差较小。

关键词: 麻纤维, 横截面参数, 边界跟踪算法, 边缘提取, 纤维图像处理

Abstract:

It is difficult to simultaneously measure the parameters of multiple fibers in the cross-section image of fibers. To solve this problem, an algorithm based on boundary tracking for measuring the cross-section parameters of hemp fibers was proposed. After the edges of hemp fibers were extracted by an edge extraction algorithm, an appropriate edge detection image was obtained by modifying sensitivity threshold of the edge extraction algorithm. The hemp fibers were then identified and marked by a boundary tracking algorithm. All hemp fibers in the image were marked by cyclic marking and path point coordinates of boundary tracking were preserved. Finally, the algorithm was used to measure the perimeter, area and roundness of hemp fibers. The experimental results show that the method can simultaneously measure cross-sectional parameters of several hemp fibers. According to the data of the standard circle used for testing, the circumference deviation and area deviation of hemp fibers measured by this algorithm are about 3% and 4% respectively, and the data error is small.

Key words: hemp fiber, cross-section parameter, boundary tracking algorithm, edge extraction, fiber image processing

中图分类号: 

  • TS127

图1

麻纤维的原始图像(×20)"

图2

算法对比图(×220)"

图3

Canny算子边缘检测图(×220)"

图4

8邻域方向码"

图5

单纤维边界跟踪图"

图6

预处理及边界跟踪图像(×220)"

图7

多纤维算法处理效果对比图(×220)"

表1

测试圆的统计数据"

圆的
直径/
像素
理论
周长/
像素
理论
面积/
像素2
实际
周长/
像素
实际
面积/
像素2
周长
偏差/
%
面积
偏差/
%
圆度
20 62.8 314.2 64.3 332.0 2.4 5.7 1.009
50 157.1 1 963.5 160.8 2 041.5 2.3 4.0 0.990
150 471.2 17 671.5 506.6 18 456.0 7.5 4.4 1.030

图8

麻纤维横截面参数"

图9

麻纤维圆度统计"

[1] 郭荣幸. 基于纤维图像的横截面轮廓提取和识别技术[J]. 现代丝绸科学与技术, 2016,31(1):35-37.
GUO Rongxing. Cross section contour extraction and recognition technology based on fiber image[J]. Modern Silk Science and Technology, 2016,31(1):35-37.
[2] 应乐斌, 戴连奎, 吴俭俭, 等. 基于纤维纵向显微图像的棉/亚麻单纤维识别[J]. 纺织学报, 2012,33(4):12-18.
YING Lebin, DAI Liankui, WU Jianjian, et al. Single fiber identification of cotton/flax fabric based on longitudinal view of microscopic fiber images[J]. Journal of Textile Research, 2012,33(4):12-18.
[3] 张传雄, 吴雄英. 图像处理技术在纤维素纤维纵向特征参数研究中的应用[J]. 东华大学学报(自然科学版), 2006(1):46-49.
ZHANG Chuanxiong, WU Xiongying. The application of image processing technology to the characteristic parameters of cellulose fibers[J]. Journal of Donghua University(Natural Science Edition), 2006(1):46-49.
[4] BEL P D, XU B G. Fiber longitudinal measurements for predicting white speck contents of dyed cotton fabrics[J]. Textile Research Journal, 2010,80(11):1047-1055.
doi: 10.1177/0040517509352516
[5] FRYDRYCH I, RACZYNSKA M, CEKUS Z. Measurement of cotton fineness and maturity by different methods[J]. Fibres and Textiles in Eastern Europe, 2010,18(6):54-59.
[6] GUO X W, OUYANG W B, XU B G. Assessing cotton maturity using distributional parameters of fiber cross-section measurements[J]. Textile Research Journal, 2014,84(15):1666-1676.
doi: 10.1177/0040517514527375
[7] 吴兆平, 余序芬. 羊毛细度与横截面几何参量的微机图象分析[J]. 上海工程技术大学学报, 1995(3):6-10.
WU Zhaoping, YU Xufen. Image processing method for measuring the fineness and geometric parmeters of the wool[J]. Journal of Shanghai University of Engineering Scince, 1995(3):6-10.
[8] WAN Y, YAO L, XU B G. Automatic segmentation of fiber cross sections by dual thresholding[J]. Journal of Engineered Fibers and Fabrics, 2012,7(1):114-120.
[9] 陶伟森, 许忠保, 陈威, 等. 采用数字图像处理的羊毛与羊绒纤维识别[J]. 棉纺织技术, 2018,46(2):1-4.
TAO Weisen, XU Zhongbao, CHEN Wei, et al. Identification of wool and cashmere fiber based on digital image processing[J]. Cotton Textile Technology, 2018,46(2):1-4.
[10] JIA L F, JIA X Y. Automatic identification of ramie and cotton fibers based on iodine blue reaction: part II: automatic identification of ramie and cotton using color, texture, shape, and stripes[J]. Textile Research Journal, 2016,86(15):1637-1650.
doi: 10.1177/0040517515603806
[11] TURNER C, SARI-SARRAF H, HEQUET E, et al. Variation in maturity observed along individual cotton fibers using confocal microscopy and image analysis[J]. Textile Research Journal, 2015,85(8):867-883.
doi: 10.1177/0040517514551466
[12] VIRK A S, HALL W, SUMMERSCALES J. Physical characterization of jute technical fibers: fiber dimen-sions[J]. Journal of Natural Fibers, 2010,7(3):216-228.
doi: 10.1080/15440478.2010.504389
[13] WANG Q D, XU B G. A coupled-contour model for effective segmentation of cotton cross-sections in wide-field microscopic images[J]. Textile Research Journal, 2017,87(12):1509-1521.
doi: 10.1177/0040517516654113
[14] WANG R W, TANG L P, ZENG P F, et al. Characterizing profiled fibers by multiscale shape representations[J]. Journal of Testing and Evaluation, 2012,40(3):435-439.
[15] WANG Z L, ZHONG Y Q, WANG S Y. Profiled fiber cross-sectional shape characterization for identi-fication[J]. International Journal of Clothing Science and Technology, 2011,23(2/3):131-141.
doi: 10.1108/09556221111107324
[16] ZHANG X, LI D L, YANG W Z, et al. An improved morphological edge detection method for color images of cotton foreign fibers[J]. Sensor Letters, 2011,9(3):1020-1023.
doi: 10.1166/sl.2011.1402
[1] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[2] 郑振荣, 智伟, 邢江元, 杜换福, 徐子健. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11): 88-93.
[3] 李梦珍, 张斌, 郁崇文. 采用N-甲基吡咯烷酮的苎麻纤维柔软处理[J]. 纺织学报, 2019, 40(04): 72-76.
[4] 蔡逸超, 周晓, 宋明峰, 牟新刚. 应用多尺度多方向模板卷积的筒子纱缺陷检测[J]. 纺织学报, 2019, 40(04): 152-157.
[5] 石大为 王瑞 陈旭 吴炳洋. 基于射频处理的胡麻生物脱胶工艺[J]. 纺织学报, 2018, 39(03): 73-78.
[6] 向军 张杰 潘如如 韩要宾 张继东 高卫东 . 采用纹理平滑的印花织物图案轮廓提取[J]. 纺织学报, 2017, 38(11): 162-167.
[7] 刘笑莹 方斌 朱守艾 程隆棣 张瑞云 俞建勇. 棉/大麻纤维混纺低损耗工艺优化[J]. 纺织学报, 2017, 38(01): 35-39.
[8] 钟智丽 朱敏 张宏杰 翁琦. 大麻纤维在氯化锂/N,N-二甲基乙酰胺溶解体系中的溶解特性[J]. 纺织学报, 2016, 37(11): 92-97.
[9] 陈美玉 来侃 孙润军 陈立成 王玉. 大麻/聚乳酸复合发泡材料的力学性能[J]. 纺织学报, 2016, 37(01): 28-34.
[10] 蒋亚君 邱莹丹 王霁龙 章倩 邱夷平. 应用1-辛烯涂层与常压等离子体处理的苎麻纤维疏水性能改性[J]. 纺织学报, 2015, 36(06): 7-12.
[11] 杨喜爱 肖爱平 冷鹃 程毅 廖丽萍. 亚麻纤维线密度与直径回归相关模型的构建及验证[J]. 纺织学报, 2014, 35(8): 21-0.
[12] 罗慧 张磊 林志行 刘剑 陈云媚 靳向煜 王洪. 薄型黄麻/低熔点纤维复合地膜材料的研制[J]. 纺织学报, 2013, 34(5): 47-52.
[13] 张勇兵 张婉 王强 范雪荣 袁久刚 王平 章金芳. 漆酶处理对黄麻纤维木质素结构的影响[J]. 纺织学报, 2013, 34(11): 94-0.
[14] 张毅 金关秀 郁崇文. 红麻纤维的化学脱胶工艺[J]. 纺织学报, 2013, 34(1): 62-65.
[15] 杨自平, 张建春, 张华, 张晓霞, 高志强. 基于PAS2050规范的大麻纤维产品碳足迹测量分析[J]. 纺织学报, 2012, 33(8): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!