纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 143-147.doi: 10.13475/j.fzxb.20190302305

• 服装工程 • 上一篇    下一篇

服装缝制生产物料的低碳配送路径优化

张旭靖, 王立川, 陈雁()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215021
  • 收稿日期:2019-03-05 修回日期:2019-12-17 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 陈雁
  • 作者简介:张旭靖(1989—),女,博士生。主要研究方向为服装生产智能管理。

Optimization of apparel material distribution route based on carbon emission

ZHANG Xujing, WANG Lichuan, CHEN Yan()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
  • Received:2019-03-05 Revised:2019-12-17 Online:2020-03-15 Published:2020-03-27
  • Contact: CHEN Yan

摘要:

为减少服装缝制生产物料配送环节的碳排放量,以及物料配送路径和作业人员数量不易确定的问题,提出一个以物料配送碳排放最少和配送车辆数最少为目标的多目标优化模型。以工序流程、机器种类、服装部件3种工作地布置方式的男式衬衫生产线为例,采用NSGA-Ⅱ算法对其物料配送优化问题进行求解。结果表明:3种工作地布置方式均需要4名作业人员进行配送;按照机器种类工作地布置方式的物料配送作业人员行走的总距离最少(2 979 m),产生的碳排放量也最少(0.157 kgCO2e);按照服装部件工作地布置方式的物料配送作业人员行走的总距离和产生的碳排放量最多。通过算例验证了模型和算法的可行性和有效性,可为服装生产企业提供多种物料低碳配送模型。

关键词: 服装缝制生产线, 碳排放, 物料配送, NSGA-II算法, 低碳配送模型

Abstract:

In order to reduce the carbon emission in the distribution process of garment materials, and solving problems in route planning and the determining the number of workers in the material distribution process, a multi-objective optimization with minimum carbon emissions and minimum number of vehicles was proposed. A men's shirt production line with three types of floor planning according to process flow, machine type and clothing parts, was taken as an example. A multi-objective optimization model of material distribution path was established, and the NSGA-II algorithm is used to solve the problem. The results show that all three floor layouts require 4 operators to distribute. By comparison, the total distance of material distribution according to the type of machines is 2 979 m, and the carbon emission was also the least, which is 0.157 kgCO2e. The total distance and the carbon emission of material distribution in the garment components layout are the most. The feasibility of the model and algorithm are validated through experiment, and a variety of material distribution models for apparel manufacturers are proposed based on this research.

Key words: apparel production line, carbon emission, material distribution, NSGA-II algorithm, low carbon distribution model

中图分类号: 

  • TS941

图1

编码示意图"

表1

我国居民不同活动状态的短期呼吸量"

活动程度 呼吸量/(L·min-1)
休息 6.1
7.3
轻微活动 9.1
中等活动 24.4
重体力活动 36.6
极体力活动 60.9

表2

按照工序流程布置方式的工作地数据"

工作地
编号
坐标 数量/
最早
时间/s
最晚
时间/s
服务
时间/s
1 (18, 8) 6 0 40 20
2 (7, 18) 10 0 40 20
3 (14, 3) 8 0 84 20
4 (15, 8) 8 0 40 20
5 (13, 12) 2 0 50 10
6 (7, 8) 8 20 80 20
7 (19, 12) 2 5 65 10
8 (9, 3) 6 20 60 20

表3

按照工艺种类布置方式的工作地数据"

工作地
编号
坐标 数量/
最早
时间/s
最晚
时间/s
服务
时间/s
(18, 12) 4 20 80 20
(10, 8) 2 20 94 10
(19, 8) 6 0 50 10
(8, 4) 4 20 60 20
(13,8) 2 5 65 10
(16, 8) 12 0 40 20
(18, 4) 8 0 40 20
(12, 4) 4 0 60 20
(9, 18) 8 0 40 20

表4

按照服装部件布置方式的工作地数据"

工作地
编号
坐标 数量/
最早
时间/s
最晚
时间/s
服务
时间/s
(1) (24, 4) 4 0 40 20
(2) (22, 11) 2 0 50 10
(3) (22, 17) 12 0 40 20
(4) (13, 4) 10 0 40 20
(5) (19, 4) 4 0 40 20
(6) (8, 22) 2 78 138 10
(7) (11, 17) 10 0 60 20
(8) (6, 11) 2 5 65 10
(9) (26, 11) 2 225 285 10
(10) (18, 22) 2 20 80 10

表5

不同工作地布置方式的物料配送路径方案与距离"

工作地
布置方式
车辆
(配送人员)
编号
路径
方案
距离/
m
A 0-3-8-0 516
工序流程 B 0-1-7-0 936
C 0-4-5-0 813
D 0-2-6-0 739
A' 0-⑤-⑥-0 727
工艺种类 B' 0-⑧-④-0 475
C' 0-⑦-③-①-0 939
D' 0-⑨-②-0 838
A″ 0-(4)-(7)-0 887
B″ 0-(5)-0 682
服装部件 C″ 0-(8)-(2)-0 985
D″ 0-(1)-0 844
E″ 0-(3)-(10)-(6)-(9)-0 1 881

表6

男式衬衫物料配送的碳排放量"

工作地布置方式 碳排放量/kgCO2e
工序流程 0.159
工艺种类 0.158
服装部件 0.280
[1] 俞璐, 王立川, 陈雁. 服装生产过程碳排放量核算[J]. 纺织学报, 2016,37(4):160-164.
YU Lu, WANG Lichuan, CHEN Yan. Accounting of carbon emission in garment production process[J]. Journal of Textile Research, 2016,37(4):160-164.
[2] 陈雁. 服装设计与工程学科发展趋势与关键议题[J]. 纺织学报, 2019,40(1):182-188.
CHEN Yan. Trends and key subjects of apparel design and engineering[J]. Journal of Textile Research, 2019,40(1):182-188.
[3] ZHU Q, QIAN L, LI Y, et al. An improved particle swarm optimization algorithm for vehicle routing problem with time win-dows[C]// Proceeings of 2006 IEEE international conference on evolutionary computation. Canada: IEEE, 2006: 1386-1390.
[4] CHEN A, YANG G, WU Z. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem[J]. Journal of Zhejiang University: Science A, 2006,7(4):607-614.
[5] LIN C T. Using predicting particle swarm optimization to solve the vehicle routing problem with time windows[C]// Proceeings of 2008 IEEE international conference on industrial engineering and engineering management. Singapore: IEEE, 2008: 810-814.
[6] 严正峰, 梅发东, 葛茂根, 等. 基于模糊软时间窗的车间物料流路径优化方法[J]. 计算机集成制造系统, 2015,21(10):2760-2767.
YAN Zhengfeng, MEI Fadong, GE Maogen, et al. Path optimization method of workshop logistics based on fuzzy soft time windows[J]. Computer Integrated Manufacturing Systems, 2015,21(10):2760-2767.
[7] 张铭鑫, 陈鸿海. 基于模糊时间窗的再制造装配车间物料配送研究[J]. 组合机床与自动化加工技术, 2015(11):133-136.
ZHANG Mingxin, CHEN Honghai. Research on material distribution of remanufacturing assembly workshop base on fuzzy time windows[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(11):133-136.
[8] 李思淼, 葛茂根. 面向装配过程的物料配送优化研究[J]. 机械工程师, 2014(7):55-58.
LI Simiao, GE Maogen. Research on daterial delivery path optimization for assembly process[J]. Mechanical Engineer, 2014(7):55-58.
[9] 李伟, 董宝力. 基于空箱拉动的总装线物料配送研究[J]. 成组技术与生产现代化, 2016,33(1):21-26,40.
LI Wei, DONG Baoli. Research on material distribution of assembly line based on empty box[J]. Group Technology & Production Modernization, 2016,33(1):21-26,40.
[10] CHENG C, YANG P, QI M, et al. Modeling a green inventory routing problem with a heterogeneous fleet[J]. Transportation Research Part E: Logistics and Transportation Review, 2017,97:97-112.
[11] AZADEH A, ELAHI S, FARAHANI M H, et al. A genetic algorithm-Taguchi based approach to inventory routing problem of a single perishable product with transshipment[J]. Computers & Industrial Engineering, 2017,104:124-133.
[12] WANG C, GUAN Z, SHAO X, et al. Simulation-based optimization of logistics distribution system for an assembly line with path constraints[J]. International Journal of Production Research, 2014,52(12):3538-3551.
[1] 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52.
[2] 邵景峰, 马创涛, 王蕊超, 袁玉楼, 王希尧, 牛一凡. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(02): 166-172.
[3] 俞璐 王立川 陈雁. 服装生产过程碳排放量核算[J]. 纺织学报, 2016, 37(4): 160-164.
[4] 俞璐 王立川 陈雁. 服装生产过程碳排放计算模型[J]. 纺织学报, 2016, 37(3): 156-159.
[5] 杨自平, 张建春, 张华, 张晓霞, 高志强. 基于PAS2050规范的大麻纤维产品碳足迹测量分析[J]. 纺织学报, 2012, 33(8): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!