纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 154-159.doi: 10.13475/j.fzxb.20190605106

• 机械与器材 • 上一篇    下一篇

剑杆织机打纬凸轮接触碰撞力建模与仿真

魏展1,2, 金国光1,2(), 李博1,2, 宋艳艳1, 路春辉1   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2019-06-24 修回日期:2019-12-18 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 金国光
  • 作者简介:魏展(1986—),男,讲师,博士生。主要研究方向为机械系统柔性动力学与纺织机械动力学。
  • 基金资助:
    国家自然科学基金项目(51475330);天津市高等学校创新团队培养计划(TD13-5037);天津市自然科学基金项目(18JCQNJC05300)

Modeling and simulation of contact force generated by beating-up cam in rapier looms

WEI Zhan1,2, JIN Guoguang1,2(), LI Bo1,2, SONG Yanyan1, LU Chunhui1   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2019-06-24 Revised:2019-12-18 Online:2020-03-15 Published:2020-03-27
  • Contact: JIN Guoguang

摘要:

针对剑杆织机打纬凸轮副接触碰撞建模及仿真验证比较困难的问题,探讨便捷有效的接触碰撞力建模方法。首先,基于L-N接触碰撞模型,在现有接触碰撞力混合模型的基础上,改进并建立适用于打纬凸轮系统的接触碰撞力模型,进而对碰撞力及碰撞变形进行求解;其次,应用瞬态碰撞分析软件ANSYS/LS-DYNA并配合可视化软件LS-PrePost,对模型计算结果进行仿真验证;在验证结果的正确性后,分别计算碰撞初速度和碰撞点曲率半径对碰撞力和变形量的影响程度。结果表明:碰撞初始速度和凸轮曲率半径都会对碰撞过程动态响应产生影响,但碰撞初速度对系统碰撞力和碰撞变形量影响更为明显。

关键词: 剑杆织机, 打纬凸轮, 接触碰撞力模型, 碰撞变形, 碰撞初速度

Abstract:

Aiming at the difficulty in modeling the contact force generated by the beating-up cam in rapier looms, this paper reports on a convenient and effective method for simulating the contact force. Based on the L-N contact-impact model and the existing mixed model of contact-impact force, the contact-impact force model suitable for the beating-up cam system is improved and established, which helps solve the impact force and deformation. The transient impact analysis software ANSYS/LS-DYNA and the visualization software LS-PrePost are used to simulate and verify the calculation results of the model. After validating the modelling results, the influence of the initial impact velocity and the curvature radius of the impact point on the impact force and deformation is calculated respectively. The results show that both the initial impact velocity and the radius of cam curvature have notable influence on the dynamic response of the impact process, with the initial impact velocity having more obvious influence on the impact force and the deformation of the system.

Key words: rapier loom, beating-up cam, contact force model, impacting deformation, initial impact velocity

中图分类号: 

  • TH112

图1

打纬凸轮-滚子机构模型"

图2

碰撞力与碰撞变形量"

图3

凸轮-滚子机构离散化"

图4

碰撞过程模拟仿真"

图5

滚子和凸轮标记点"

图6

碰撞变形量仿真与计算结果对比"

图7

5种碰撞初速度下碰撞力和碰撞变形量"

图8

最大碰撞力和最大碰撞变形量随碰撞初速度变化规律"

图9

5种碰撞点凸轮曲率半径下碰撞力和碰撞变形量"

图10

最大碰撞力和最大碰撞变形量随曲率半径变化规律"

[1] 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009,39(3):352-359.
DONG Fuxiang, HONG Jiazhen. Review of impact problem for dynamics of multibody system[J]. Advances in Mechanics, 2009,39(3):352-359.
[2] PANDREA N, STANESCU N D. A new approach in the study of frictionless collisions using inertances[J]. Journal of Mechanical Engineering Science, 2015,229(12):2144-2157.
[3] LI Yuntao, QUAN Qiquan, TANG Dewei, et al. A continuous contact force model of planar revolute joint based on fitting method[J]. Advances in Mechanical Engineering, 2017,9(2):1-13.
[4] KHULIEF Y A. Modeling of impact in multibody systems: an overview[J]. Journal of Computational and Nonlinear Dynamics, 2013,8(2):1-15.
[5] FLORES P, AMBROSIO J. On the contact detection for contact-impact analysis in multibody systems[J]. Multibody System Dynamics, 2010,24(1):103-122.
[6] LIU Caishan, ZHANG Ke, YANG Rei. The FEM analysis and approximate model for cylindrical joints with clearances[J]. Mechanism and Machine Theory, 2007,42(2):183-197.
[7] FLORES P, KOSHY C S, LANKARANI H M, et al. Numerical and experimental investigation on multibody systems with revolute clearance joints[J]. Nonlinear Dynamics, 2011,65(4):383-398.
[8] LI Bo, WANG Sanmin, YUAN Ru, et al. Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model[J]. Journal of Mechanical Engineering Science, 2015,230(18):3161-3174.
[9] 张雷, 苏宗帅, 季祖鹏, 等. 共轭凸轮引纬机构的凸轮轮廓线光顺与反求[J]. 纺织学报, 2017,38(12):141-149.
ZHANG Lei, SU Zongshuai, JI Zupeng, et al. Smooth and reverse design of conjugated cams of weft inser-tion[J]. Journal of Textile Research, 2017,38(12):141-149.
[10] 金国光, 魏晓勇, 魏展, 等. 旋转式多臂机提综机构动力学分析与优化[J]. 纺织学报, 2018,39(9):160-168.
JIN Guoguang, WEI Xiaoyong, WEI Zhan, et al. Dynamic analysis and optimization of rotary dobby lifting comprehensive mechanism[J]. Journal of Textile Research, 2018,39(9):160-168.
[11] WANG Nanfei, JIANG Dongxiang, BEHDINAN Kamran. Vibration response analysis of rubbing faults on a dual-rotor bearing system[J]. Archive of Applied Mechanics, 2017,87(11):1891-1907.
[12] SKRINJAR Luka, SLAVIC Janko, BOLTEZAR Miha. A validated model for a pin-slot clearance joint[J]. Nonlinear Dynamics, 2017,88(1):131-143.
[13] SHARMA S L, HIBIKI T, ISHII M. Turbulence-induced bubble collision force modeling and validation in adiabatic two-phase flow using CFD[J]. Nuclear Engineering and Design, 2017,312:399-409.
[14] ZIEGLER P, EBERHARD P. Simulative and experimental investigation of impacts on gear wheels[J]. Computer Methods in Applied Mechanics and Engineering, 2008,197(51/52):4653-4662.
[15] HOU Yulei, WANG Yi, JING Guoning. Chaos phenomenon and stability analysis of RU-RPR parallel mechanism with clearance and friction[J]. Advances in Mechanical Engineering, 2018,10(1):1-11.
[16] 白争锋. 考虑铰间间隙的机构动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 64-92.
BAI Zhengfeng. Research on dynamic characterisitcs of mechanism with joint clearance[D]. Harbin: Harbin Institute of Technology, 2011: 64-92.
[17] BAI Zhengfeng, ZHAO Yang. A hybrid contact force model of revolute joint with clearance for planar mechanical systems[J]. International Journal of Non-Linear Mechanics, 2013,48:15-36.
[1] 李博, 胡凯, 金国光, 魏展, 畅博彦. 空间连杆引纬机构柔性铰间隙动态特性研究[J]. 纺织学报, 2021, 42(01): 145-153.
[2] 喻陈楠, 贾江鸣, 陈之威, 陈建能, 陈加友, 陆文韬. 新型剑杆织机引纬机构的反求建模与运动学仿真[J]. 纺织学报, 2021, 42(01): 154-161.
[3] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[4] 周香琴, 顾叶琴, 吴震宇. 可简便调幅的剑杆织机引纬机构参数特征[J]. 纺织学报, 2019, 40(09): 173-179.
[5] 周香琴 杨胜皎 王琴龙 蒋辉 唐存满. 剑杆织机惯性载荷变化规律及提速试验[J]. 纺织学报, 2017, 38(08): 144-149.
[6] 董红坤 贺辛亥 钟鹏 渠志刚 邢圆圆. 三维机织物织边造型工艺设计[J]. 纺织学报, 2017, 38(04): 50-54.
[7] 于红梅 郁崇文. 采用现代工艺的传统风格夏布开发[J]. 纺织学报, 2016, 37(05): 37-41.
[8] 金国光 秦凯旋 魏展 袁汝旺 周国庆. 剑杆织机柔性从动件共轭凸轮打纬机构动力学分析[J]. 纺织学报, 2016, 37(05): 137-142.
[9] 张雷 余克龙 陈少钟 张吉峰. 基于ANSYS和ADAMS空间四连杆引纬机构的柔性动力学仿真[J]. 纺织学报, 2013, 34(5): 116-120.
[10] 宋亚男, 徐荣华, 王钦若. 剑杆织机经纱张力控制中滤波器设计与分析[J]. 纺织学报, 2012, 33(2): 115-120.
[11] 徐荣华 王钦若 宋亚男. 剑杆织机经纱张力控制中噪声信号估计与滤波[J]. 纺织学报, 2011, 32(8): 128-132.
[12] 林万焕;王英;赵雄;陈建能. 基于Hermite多项式的打纬运动学方程及其应用[J]. 纺织学报, 2011, 32(3): 127-132.
[13] 雷利照. 双侧剑杆织机中央交接纬合理性的探讨[J]. 纺织学报, 2010, 31(10): 124-128.
[14] 郭宏亮;王青;叶国铭. 修正梯形加速度运动规律中过渡曲线的设计[J]. 纺织学报, 2007, 28(8): 100-101.
[15] 肖卫兵. 分离筘座式挠性剑杆织机电子引纬张力控制[J]. 纺织学报, 2007, 28(7): 105-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!