纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 26-32.doi: 10.13475/j.fzxb.20190202707

• 纤维材料 • 上一篇    下一篇

聚丙烯腈/硝酸钠纳米纤维膜的制备及其压电性能

吴横1, 金欣1(), 王闻宇2, 朱正涛2,3, 林童2,4, 牛家嵘2   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
    3.迪肯大学 前沿纤维研究与创新中心, 吉朗 VIC3217
    4.南达科他矿业理工学院化学和应用生物科学系, 拉皮德城 SD57702
  • 收稿日期:2019-02-18 修回日期:2019-12-15 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 金欣
  • 作者简介:吴横(1994—),女,硕士生。主要研究方向为压电高聚物。
  • 基金资助:
    国家自然科学基金项目(51103101);国家自然科学基金项目(51573136)

Preparation and piezoelectric properties of polyacrylonitrile/sodium nitrate nanofiber membrane

WU Heng1, JIN Xin1(), WANG Wenyu2, ZHU Zhengtao2,3, LIN Tong2,4, NIU Jiarong2   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    3. Future Fibres Research and Innovation Center, Deakin University, Geelong VIC3217, Australia
    4. Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City SD57701, USA
  • Received:2019-02-18 Revised:2019-12-15 Online:2020-03-15 Published:2020-03-27
  • Contact: JIN Xin

摘要:

为提高聚丙烯腈(PAN)纤维膜的压电性能,将硝酸钠(NaNO3)掺杂到PAN中,利用静电纺丝技术制备了PAN/NaNO3纳米纤维膜。探究了NaNO3用量以及纺丝速度对静电纺PAN纤维膜压电性能的影响。通过扫描电子显微镜、红外光谱仪、X射线衍射仪、驻极体非织造压电性能测试系统以及压电测试仪对PAN/NaNO3纤维膜的表面形貌、构象和压电性能进行表征与测试。结果表明:将NaNO3掺杂到PAN中会导致纤维膜的平面锯齿构象含量增加,晶面间距减小,进而影响PAN纤维膜的压电性能;当NaNO3质量分数为0.9%、纺丝速度为1 000 mm/s时,纤维膜的压电性能明显提高,此时PAN/NaNO3纤维膜中平面锯齿构象含量最多,晶面间距最小,与未掺杂NaNO3的PAN纤维膜相比,此PAN纤维膜压电电压和电流分别提高了40%和174.53%。

关键词: 硝酸钠, 聚丙烯腈纤维膜, 纳米纤维膜, 静电纺丝, 压电性能

Abstract:

In order to improve the piezoelectric properties of polyacrylonitrile (PAN) fiber membranes, sodium nitrate (NaNO3) was doped into PAN, and PAN/NaNO3 fiber membranes were prepared by electrospinning. The effects of NaNO3 content and spinning speed on piezoelectric properties of the electrospun PAN fiber membranes were investigated. The surface morphology, conformation and piezoelectric properties of PAN/NaNO3 fiber membranes were characterized by scanning electron microscopy, infrared spectroscopy, X-ray diffraction, electret nonwoven piezoelectric performance testing system and piezoelectric tester. The results show that doping NaNO3 into PAN can increase the planar zigzag conformation content and decrease the crystal plane spacing, thus affecting the piezoelectric properties of PAN fiber membranes. In particular, when the doping amount of NaNO3 is 0.9% and the spinning speed is 1 000 mm/s, the piezoelectric properties of fiber membranes are improved notably. At the same time, the planar sawtooth conformation content of PAN/NaNO3 fiber membrane is the highest and crystal plane spacing is the smallest. The piezoelectric voltage and current of this PAN fiber membrane are increased by 40% and 174.53% respectively.

Key words: sodium nitrate, polyacrylonitrile fiber membrane, nanofiber membrane, electrospinning, piezoelectric property

中图分类号: 

  • TB34

图1

静电纺丝装置简图"

图2

压电元件示意图"

图3

压电测试原理图"

图4

不同质量分数NaNO3掺杂PAN纤维膜表面扫描电镜照片(×6 000)"

图5

不同质量分数NaNO3掺杂PAN纤维膜的红外谱图"

图6

不同质量分数NaNO3掺杂PAN纤维膜的XRD谱图"

图7

不同质量分数NaNO3掺杂PAN纤维膜的压电常数"

表1

不同质量分数NaNO3掺杂PAN纤维膜的压电性能"

NaNO3质量分数/% 压电电压/V 压电电流/μA
0 5.40 3.39
0.5 6.58 4.15
0.9 7.10 7.16
1.3 5.10 3.77
1.7 4.65 2.52

图8

不同转速下PAN/NaNO3纤维膜的扫描电镜照片(×6 000)"

图9

不同速度下PAN/NaNO3纤维膜的红外光谱图"

图10

不同纺丝速度下PAN/NaNO3纤维膜的XRD图谱"

图11

不同纺丝速度下PAN/NaNO3纤维膜的压电常数变化"

图12

不同纺丝速度下PAN/NaNO3纤维膜的压电电压和电流变化"

[1] NAKAMACHI E, UETSUJI Y, KURAMADE H. Process crystallographic simulation for biocompatible piezoelectric material design and generation[J]. Archives of Computational Methods in Engineering, 2013,20(2):155-183.
[2] 高悦, 梁永日, 温世鹏, 等. 压电聚偏氟乙烯纳米纤维的应用进展[J]. 高分子材料科学与工程, 2016,32(5):176-181.
GAO Yue, LIANG Yongri, WEN Shipeng, et al. Progress in the application of piezoelectric polyvinylidene fluoride nanofibers[J]. Polymer Materials Science and Engineering, 2016,32(5):176-181.
[3] KAWAI H. The piezoelectricity of poly (vinylidene fluoride)[J]. Japanese Journal of Applied Physics, 1969,8(7):975-976.
[4] LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016,7.DOI: 10.1038/ncomms11108.
doi: 10.1038/ncomms13755 pmid: 28008906
[5] SHAO H, FANG J, WANG H, et al. Effect of static charges on mechanical-to-electrical energy conversion of electrospun PVDF nanofiber mats[J]. Advanced Materials Letters, 2016,8(4):418-422.
[6] FANG J, WANG X, LIN T. Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes[J]. Journal of Materials Chemistry, 2011 (30):11088-11091.
[7] UEDA H, CARR S H. Piezoelectricity in polyacrylonitrile[J]. Polymer Journal, 1984,16(9):661-667.
[8] 毛梦烨. 无机盐掺杂聚偏氟乙烯纳米发电机的制备[D]. 上海:东华大学, 2014: 35-42.
MAO Mengye. Preparation of inorganic salt doped polyvinylidene fluoride nanogenerator[D]. Shanghai: Donghua University, 2014: 35-42.
[9] GROBELNY J, SOKOL M, TURSKA E. A study of conformation, configuration and phase structure of polyacrylonitrile and their mutual dependence by means of WAXS and 1H BL-nmr[J]. Polymer, 1984,25(10):1415-1418.
[10] RIZZO P, AURIEMMA F, GUERRA G, et al. Conformational disorder in the pseudohexagonal form of atactic polyacrylonitrile[J]. Macromolecules, 1996,29(27):8852-8861.
[11] HOBSON R J, WINDLE A H. Crystalline structure of atactic polyacrylonitrile[J]. Macromolecules, 1993,26(25):6903-6907.
[12] MINAGAWA M, MIYANO K, TAKAHASHI M, et al. Infrared characteristic absorption bands of highly isotactic poly (acrylonitrile)[J]. Macromolecules, 1988,21(8):2387-2391.
[13] WANG W, ZHENG Y, JIN X, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes[J]. Nano Energy, 2019,56:588-594.
[14] 程茂芸. 聚丙烯腈电纺膜制备及其压电性能研究[D]. 天津:天津工业大学, 2017: 16-21.
CHENG Maoyun. Preparation of polyacrylonitrile electrospun film and piezoelectric properties[D]. Tianjin: Tiangong University, 2017: 16-21.
[15] 赵从涛, 覃小红. 盐对聚丙烯腈静电纺丝的影响[J]. 东华大学学报(自然科学版), 2008,34(1):33-37.
ZHAO Congtao, QIN Xiaohong. Effect of salt on electrospinning of polyacrylonitrile[J]. Journal of Donghua University(Natural Science Edition), 2008,34(1):33-37.
[16] 张静. 纺丝过程中PAN纤维分子凝聚态结构的转变[D]. 北京:北京化工大学, 2012: 20-25.
ZHANG Jing. Transformation of PAN fiber molecular condensed structure during spinning[D]. Beijing: Beijing University of Chemical Technology, 2012: 20-25.
[17] DEITZEL J M, KLEINMEYER J, HARRIS D E A, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 2001,42(1):261-272.
[18] SAWAI D, YAMANE A, TAKAHASHI H, et al. Development of high ductility and tensile properties by a two-stage draw of poly (acrylonitrile): effect of molecular weight[J]. Journal of Polymer Science Part B: Polymer Physics, 1998,36(4):629-640.
[19] HU X, JOHNSON D J, TOMKA J G. Molecular modelling of the structure of polyacrylonitrile fibres[J]. Journal of The Textile Institute, 1995,86(2):322-331.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[11] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[12] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[13] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[14] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[15] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/ 聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!