纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 33-38.doi: 10.13475/j.fzxb.20181206506

• 纤维材料 • 上一篇    下一篇

硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征

王世贤1, 降帅1, 李萌萌1, 刘丽芳1,2(), 张丽3   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
    3.吉祥三宝高科纺织有限公司, 安徽 阜阳 236500
  • 收稿日期:2018-12-29 修回日期:2019-09-24 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 刘丽芳
  • 作者简介:王世贤(1993—),女,硕士生。主要研究方向为纳米纤维素气凝胶的制备及应用。
  • 基金资助:
    江苏省苏州市科技计划项目(ZXL2018134)

Preparation and characterization of nanocellulose aerogel modified by silane coupling agent

WANG Shixian1, JIANG Shuai1, LI Mengmeng1, LIU Lifang1,2(), ZHANG Li3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    3. Jixiang Sanbao High-technology Textile Limited Company, Fuyang, Anhui 236500, China
  • Received:2018-12-29 Revised:2019-09-24 Online:2020-03-15 Published:2020-03-27
  • Contact: LIU Lifang

摘要:

为研究硅烷偶联剂含量对纳米纤维素气凝胶性能的影响,选用氨丙基三乙氧基硅烷(KH-550)和甲基三甲氧基硅烷(MTMS)2种硅烷偶联剂对纳米纤维素(CNF)气凝胶进行修饰。通过扫描电子显微镜、热重分析仪、万能强力机和热常数分析仪进行测试与表征。结果表明:硅烷偶联剂的添加使改性气凝胶红外光谱图上出现了含硅峰值,但并未改变气凝胶的组分;改性后气凝胶的孔洞明显增多;MTMS与CNF的质量比为1∶2时,改性气凝胶的压缩回弹性最好(7.25 kPa);MTMS的添加使改性气凝胶具有良好的疏水性,接触角为156°;随着KH-550的添加,气凝胶导热系数先降低后升高;随着MTMS的添加,气凝胶导热系数逐渐降低。

关键词: 纳米纤维素, 气凝胶, 硅烷偶联剂, 氨丙基三乙氧基硅烷, 甲基三甲氧基硅烷

Abstract:

In order to study the influence of silane coupling agent content on the performance of nanocellulose aerogel, two silane coupling agents, aminopropyl triethoxysilane (KH-550) and methyl trimethoxysilane (MTMS), were selected to modify nanocellulose (CNF) aerogel. Characterization tests were carried out by scanning electron microscopy, thermogravimetric analyzer, universal strength machine and thermal constant analyzer. The results show that the addition of silane coupling agent results in the peak of silicon content in the modified aerogels, but does not change the composition of aerogels. The porosity of K-CNF aerogels and M-CNF aerogels increase significantly in comparison with the unmodified aerogels. When the addition ratio of MTMS is 1∶2, the optimal compression strength of the modified aerogels reaches 7.25 kPa, and the addition of MTMS improves the hydrophobicity of the modified aerogels with a contact angle of 156°. With the addition of KH-550, the thermal conductivity of aerogels first decreases and then increases. With the addition of MTMS, the thermal conductivity of aerogels decreases gradually.

Key words: nanocellulose, aerogel, silane coupling agent, aminopropy ltriethoxysilane, methy ltrimethoxysilane

中图分类号: 

  • TQ328.9

图1

未改性CNF气凝胶和K-CNF气凝胶、M-CNF气凝胶的红外光谱图"

表1

气凝胶的密度"

样品 m(纳米纤维素):
m(硅烷偶联剂)
密度/
(mg·cm-3)
CNF气凝胶 10.86
K-CNF气凝胶 1:1 12.72
M-CNF气凝胶 1:2 14.59

图2

纳米纤维素气凝胶的SEM照片(×100)"

图3

气凝胶的应力-应变图 注:1~5分别表示纳米纤维素与KH-550或者MTMS的质量比为3:1,2:1,1:1,1:2,1:3。"

图4

气凝胶的热失重曲线 注:1~5分别表示纳米纤维素与KH-550或者MTMS的质量比为3:1、2:1、1:1、1:2、1:3。"

图5

接触角测试图"

表2

硅烷偶联剂添加量对气凝胶隔热性能的影响"

m(纳米纤维素):
m(硅烷偶联剂)
导热系数
K-CNF气凝胶 M-CNF气凝胶
3:1 0.041 22 0.042 11
2:1 0.041 74 0.041 52
1:1 0.039 97 0.038 96
1:2 0.048 32 0.038 60
1:3 0.053 15 0.037 86
[1] 林智钦. 中国能源环境中长期发展战略[J]. 中国软科学, 2013(12):45-57.
LIN Zhiqin. Medium and long-term development strategy of China's energy & environment[J]. China Soft Science, 2013(12):45-57.
[2] 赵群. 纳米微晶纤维素的制备、改性及其增强复合材料性能的研究[D]. 上海:东华大学, 2014: 3-16.
ZHAO Qun. Research on the preparation and modification of cellulose nanocrystals and its application of reinforced composites[D]. Shanghai: Donghua Universiy, 2013: 3-16.
[3] 范必涛. 竹质基纤维素纳米纤维功能化气凝胶的研究[D]. 杭州:浙江农林大学, 2017: 1-36.
FAN Bitao. Study on the functional aerogels derived from cellulose nanofibers existed in the bamboo[D]. Hangzhou: Zhejiang A&F University, 2017: 1-36.
[4] MOON R J, MARTINI A, NAIRN J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011,40(42):3941-3994.
[5] ZHU H, LUO W, CIESIELSKI P N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016,116(16):9305-9374.
[6] 孔勇, 沈晓冬, 崔升. 气凝胶纳米材料[J]. 中国材料进展, 2016,35(8):569-576,568.
KONG Yong, SHEN Xiaodong, CUI Sheng. Nano materials of aerogels[J]. Materials China, 2016,35(8):569-576,568.
[7] SHLYAKHTINA A V, OH Y J. Transparent SiO2 aerogels prepared by ambient pressure drying with ternary azeotropes as components of pore fluid[J]. Journal of Non-Crystalline Solids, 2008,354(15-16):1633-1642.
[8] 陶丹丹, 白绘宇, 刘石林, 等. 纤维素气凝胶材料的研究进展[J]. 纤维素科学与技术, 2011,19(2):64-75.
TAO Dandan, BAI Huiyu, LIU Shilin, et al. Research progress of cellulose aerogel materials[J]. Journal of Cellulose Science and Technology, 2011,19(2):64-75.
[9] 王非, 陈晓红, 胡子君, 等. 疏水SiO2气凝胶的制备及表征[J]. 硅酸盐通报, 2008,27(6):1235-1239.
WANG Fei, CHEN Xiaohong, HU Zijun, et al. Preparation and characterization of hydrophobic silica aerogels[J]. Bulletin of The Chinese Ceramic Society, 2008,27(6):1235-1239.
[10] 林高用, 张栋, 卢斌. 非超临界干燥法制备块状SiO2气凝胶[J]. 中南大学学报(自然科学版), 2006(6):1117-1121.
LIN Gaoyong, ZHANG Dong, LU Bin. Preparation of block silica aerogels via non-supercritical drying[J]. Journal of Central South University(Natural Science Edition), 2006(6):1117-1121.
[11] 吴清林, 梅长彤, 韩景泉, 等. 纳米纤维素制备技术及产业化现状[J]. 林业工程学报, 2018,3(1):1-9.
WU Qinglin, MEI Changtong, HAN Jingquan, et al. Preparation technology and industrialization status of nanocellulose[J]. Journal of Forestry Engineering, 2018,3(1):1-9.
[12] MARTOÏA F, COCHEREAU T, DUMONT P J J, et al. Cellulose nanofibril foams: links between ice-templating conditions, microstructures and mechanical properties[J]. Materials & Design, 2016,104:376-391.
[13] JIANG F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A, 2014,2(18):6337-6342.
[14] ZHANG Z, SÈBE G, RENTSCH D, et al. Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water[J]. Geographical Research, 2014,26(8):2659-2668.
[15] 李涛. 低热导复合隔热材料的制备研究[D]. 武汉:武汉理工大学, 2011: 1-20.
LI Tao. Low thermal conductivity insulation composite[D]. Wuhan: Wuhan University of Technology, 2011: 1-20.
[16] MORAES A C M D, ANDRADE P F, FARIA A F D, et al. Fabrication of transparent and ultraviolet shielding composite films based on graphene oxide and cellulose acetate[J]. Carbohydrate Polymers, 2015,123:217-227.
[1] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[2] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[3] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[4] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[5] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[6] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[7] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[8] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[9] 王璐, 丁笑君, 夏馨, 王虹, 周小红. SiO2气凝胶/芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019, 40(10): 79-84.
[10] 盛宇, 徐丽慧, 孟云, 沈勇, 王黎明, 潘虹. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(07): 90-96.
[11] 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99.
[12] 刘新华 李永 储兆洋 杨旭 王翠娥. 细菌纤维素气凝胶接枝甲基丙烯酸二甲氨乙酯的制备[J]. 纺织学报, 2018, 39(03): 1-6.
[13] 刘铭 张丽平 张敏 王晓春 赵国樑 王轩 唐星辰 杨中开. 铁黄颜料的表面改性及其在超高分子量聚乙烯中的应用[J]. 纺织学报, 2018, 39(02): 86-90.
[14] 贾雪平 施磊 尤克非 季志扬 张跃华 金瑞娣. 新型载银抗菌棉织物的研制[J]. 纺织学报, 2013, 34(5): 82-85.
[15] 胡毅;阎克路;刘今强;谭剑. 低温溶胶型APTES改性聚氨酯在羊毛织物上的应用[J]. 纺织学报, 2010, 31(4): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!