纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 15-20.doi: 10.13475/j.fzxb.20190706206

• 纤维材料 • 上一篇    下一篇

聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能

万雨彩, 刘迎, 王旭, 易志兵, 刘轲(), 王栋   

  1. 武汉纺织大学 湖北省纺织新材料及其应用重点实验室, 湖北 武汉 430200
  • 收稿日期:2019-07-29 修回日期:2020-01-13 出版日期:2020-04-15 发布日期:2020-04-27
  • 通讯作者: 刘轲
  • 作者简介:万雨彩(1996—),女,硕士生。主要研究方向为纳米纤维基过滤分离材料。
  • 基金资助:
    山东省重点研发计划项目(2019JZZY010338);湖北省自然科学基金重点项目(2016CFA076)

Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber/polypropylene microfiber scaffold: a composite air filter with high filtration performance

WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke(), WANG Dong   

  1. Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2019-07-29 Revised:2020-01-13 Online:2020-04-15 Published:2020-04-27
  • Contact: LIU Ke

摘要:

为提高常规纤维基空气过滤材料的过滤性能,采用熔融共混相分离法制备得到聚乙烯醇-乙烯共聚物(PVA-co-PE)纳米纤维并制成悬浮乳液,将聚丙烯(PP)针刺基材浸渍到悬浮乳液中进行冷冻干燥处理,得到PVA-co-PE纳米纤维增强PP微米纤维骨架复合空气过滤材料。借助傅里叶变换红外光谱仪、扫描电子显微镜、静电电位计、孔径分析仪及滤料综合测试台对过滤材料的结构及性能进行表征。结果表明:当纳米纤维的面密度为9.34 g/m2时,复合空气过滤材料对尺寸为0.3 μm的NaCl气溶胶粒子的过滤效率为99.936%,阻力压降为81 Pa,品质因数为0.091 9 Pa-1,且复合过滤材料的拉伸强度及拉伸模量相比PP针刺基材均增加50%。

关键词: 聚乙烯醇-乙烯共聚物, 聚丙烯, 冷冻干燥, 复合过滤材料, 空气过滤

Abstract:

To enhance the filtration performance of fiber based air filtration materials, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibers were prepared using the melt-blend-phase-separation method. The composite filter was obtained by immersing the polypropylene (PP) needle-punched nonwoven fabric into the aqueous phase-based PVA-co-PE nanofibers and freeze-dring them. The composite filters were characterized by Fourier transform infrared spectrometer, scanning electron microscope, electrostatic voltmeter, capillary flow poromete and filter tester. After the filtration test of NaCl nano-aerosol with the size of 0.3 μm, a best filtration performance was obtained with quality factor of 0.091 9 Pa-1, filtration efficiency of 99.936% and pressure drop of 81 Pa when basic density of nanofiber is 9.34 g/m2. The tensile strength and modulus of this composite filter both show about 1.5 times higher than that of PP needle-punched nonwoven fabric.

Key words: poly(vinyl alcohol-co-ethylene), polypropylene, freeze drying, composite filter, air filtration

中图分类号: 

  • TS176.9

图1

PVA-co-PE复合过滤材料的制备示意图"

图2

PP针刺基材和PVA-co-PE复合过滤材料的SEM照片"

图3

PP针刺基材和PVA-co-PE复合过滤材料的红外光谱图"

图4

PP针刺基材和PVA-co-PE复合过滤材料过滤后的扫描电镜照片"

图5

不同面密度的PVA-co-PE复合过滤材料的过滤性能"

表1

不同空气流量下PP针刺基材和PVA-co-PE复合过滤材料的过滤效率"

空气流量/
(L·min-1)
过滤效率/%
PP针刺基材 PVA-co-PE复合过滤材料
32 54.296 99.936
50 39.672 99.925
85 27.990 99.916
100 20.519 99.892

表2

不同预处理条件下PP针刺基材和PVA-co-PE复合过滤材料的过滤性能"

预处理方式 过滤效率/% 阻力压降/Pa 平均表面电位/V
PP针刺
基材
PVA-co-PE
复合过滤材料
PP针刺
基材
PVA-co-PE
复合过滤材料
PP针刺
基材
PVA-co-PE
复合过滤材料
未处理 89.145 99.936 17 81 484 3
高湿度处理 80.848 98.752 17 83 390 3
高温处理 61.334 98.728 15 82 301 1
低温处理 54.674 98.717 14 84 283 3

图6

PP针刺基材和PVA-co-PE复合过滤材料的应力-应变曲线"

[1] LEE E S, FUNG C D, ZHU Y F. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses[J]. Environment Science Technology, 2015,49:3358-3365.
[2] LELIEVELD J, EVANS J S, FNAIS M, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 2015,525:367-371.
doi: 10.1038/nature15371 pmid: 26381985
[3] LIU K, XIAO Z, MA P F, et al. Large scale poly(vinyl alcohol-co-ethylene)/TiO2 hybrid nanofibrous filters with efficient fine particle filtration and repetitive-use performance[J]. RSC Advances, 2015,5:87924-87931.
[4] ZHANG S, LIU H, YIN X, et al. Tailoring mechanically robust poly(m-phenylene isophthalamide) nanofiber/nets for ultrathin high-efficiency air filter[J]. Science Reports, 2017,7:40550-40557.
[5] THAKUR R, DAS D, DAS A. Electret air filters[J]. Separation and Purification Review, 2013,42:87-129.
[6] THAVASI V, SINGH G, RAMAKRISHNA S. Electrospun nanofibers in energy and environmental applications[J]. Energy Environment Science, 2008,1:205-221.
[7] HUNG C H, LEUNG W. Filtration of nano-aerosol using nanofiber filter under low peclet number and transitional flow regime[J]. Separation and Purification Technology, 2011,79:34-42.
[8] KIM S J, RAUT P, JANA S C, et al. Electrostatically active polymer hybrid aerogels for airborne nanoparticle filtration[J]. ASC Application Material Interfaces, 2017,9:6401-6410.
[9] WANG N, SI Y S, WANG N, et al. Multilevel structured polyacrylonitrile/silica nanofibrous membranes for high-performance air filtration[J]. Separation and Purification Technology, 2014,126:44-51.
[10] WANG N, WANG X F, DING B, et al. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtra-tion[J]. Journal of Materials Chemistry, 2012,22:1445-1452.
[11] YI Z B, CHENG P, CHEN J, et al. PVA-co-PE nanofibrous filter media with tailored three-dimensional structure for high performance and safe aerosol filtration via suspension-drying procedure[J]. Industrial & Engineering Chemistry Research, 2018,57:9269-9280.
[12] WANG J, MA L, LI L, et al. PES microsphere/fiber low resistance composite air filter membranes prepared by electrostatic spinning[J]. Acta Polymerica Sinica, 2014,11:1479-1485.
[13] LOVERA D, BILBAO C, SCHREIER P, et al. Charge storage of electrospun fiber mats of poly(phenylene ether)/polystyrene blends[J]. Polymer Enginnering and Science, 2009,49:2430-2439.
[14] KIM D W, KWON H, SEO J C. EVOH nanocomposite films with enhanced barrier properties under high humidity conditions[J]. Polymer Composites, 2014,35:644-654.
[15] SHELAT K J, DUTTA N K, CHOUDHURY N R. Interfacial interaction and morphology of EVOH and ionomer blends by scanning thermal microscopy and its correlation with barrier characteristics[J]. Langmuir, 2008,24:5464-5473.
doi: 10.1021/la703192g pmid: 18439030
[16] LI H W, WU C Y, TEPPER F, et al. Removal and retention of viral aerosols by a novel alumina nanofiber filter[J]. J Aerosol Science, 2009,40:65-71.
[17] LOVERA D, BILBAO C, SCHREIER P, et al. Charge storage of electrospun fiber mats of poly(phenylene ether)/polystyrene blends[J]. Polymer Engineering and Science, 2009,49:2430-2439.
[18] WANG N, YANG Y J, AL-DEYAB S S, et al. Ultra-light 3D nanofibre-nets binary structured nylon 6-polyacrylonitrile membranes for efficient filtration of fine particulate matter[J]. Journal of Materials Chemistry A, 2015,3:23946-23954.
[1] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/ 氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[2] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[3] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[4] 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62.
[5] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/ 聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[6] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[7] 洪贤良, 陈小晖, 张建青, 刘俊杰, 黄晨, 丁伊可, 洪慧. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(06): 174-182.
[8] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[9] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[10] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[11] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[12] 李国庆, 李平平, 刘瀚霖, 李妮. 聚丙烯腈/ 聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(03): 20-25.
[13] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/ 纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
[14] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/ 聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[15] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2 / MIL-88B( Fe) / 聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!