纺织学报 ›› 2020, Vol. 41 ›› Issue (04): 9-14.doi: 10.13475/j.fzxb.20190500106

• 纤维材料 • 上一篇    下一篇

尿素脱胶对丝素蛋白气凝胶力学性能的影响

王宗乾1, 杨海伟1, 周剑2, 李长龙1()   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.中山大学 材料科学与工程学院, 广东 广州 510275
  • 收稿日期:2019-05-05 修回日期:2020-01-13 出版日期:2020-04-15 发布日期:2020-04-27
  • 通讯作者: 李长龙
  • 作者简介:王宗乾(1982—),男,教授,博士。主要研究方向为功能化纤维结构调控与成形技术。
  • 基金资助:
    国家级大学生创新创业训练项目(201910363031);安徽省重点研究与开发计划项目(1804a09020077);安徽工程大学研究生实践与创新项目(2018-15)

Effect of urea degumming on mechanical properties of silk fibroin aerogels

WANG Zongqian1, YANG Haiwei1, ZHOU Jian2, LI Changlong1()   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
  • Received:2019-05-05 Revised:2020-01-13 Online:2020-04-15 Published:2020-04-27
  • Contact: LI Changlong

摘要:

为提高丝素蛋白气凝胶的力学性能,采用尿素溶液体系对蚕丝进行脱胶处理后,经丝素蛋白溶解、稀释、冷冻干燥制备得到丝素蛋白气凝胶,借助扫描电子显微镜、X射线衍射光谱仪、红外光谱仪和万能材料试验机对气凝胶的形貌与结构进行分析,并与碳酸钠脱胶蚕丝制备的气凝胶进行对比。结果表明:非碱体系的尿素脱胶可降低对丝素蛋白的损伤,制备得到的气凝胶形貌完整,具有稳定的骨架结构,β-折叠结构相对含量为50.27%,结晶度为49.33%;压缩形变为70%时,尿素脱胶气凝胶的压缩强度为(32.36 ± 2.35) kPa,压缩模量为(119.31 ± 8.93 ) kPa,上述指标均远高于碳酸钠脱胶工艺制备的丝素蛋白气凝胶。

关键词: 丝素蛋白, 气凝胶, 尿素脱胶, 力学性能, 结晶结构

Abstract:

Aiming at improving mechanical properties of silk fibroin aerogel, a urea degumming process applied on raw silk was reported, and the silk fibroin aerogel was prepared through fibroin dissolution, dilution and freeze-drying. Meanwhile, the morphology and structure of the aerogel were analyzed by scanning electron microscopy, X-ray diffraction spectroscopy, infrared spectrometer and universal material testing machine. The results of which were compared with the aerogel prepared from sodium carbonate degummed silk. The findings show that the non-alkali urea degumming process has a little damage on silk fibroin, and the prepared aerogel exhibits a complete morphology and a stable skeleton structure, with relative content of its β-sheet structure being 50.27% and its crystallinity 49.33%. The compressive strength and compressive modulus of the aerogel are found to be (32.36±2.35) and (119.31± 8.93) kPa at 70% the compression deformation respectively, which are much higher than those of fibroin aerogels prepared through sodium carbonate degumming process.

Key words: silk fibroin, aerogel, urea degumming, mechanical property, crystalline structure

中图分类号: 

  • S881.3

图1

2种SF气凝胶的压缩应力-应变曲线"

图2

SF-U和SF-S气凝胶的扫描电镜照片(×100)"

图3

SF-U和SF-S气凝胶的FT-IR光谱图"

图4

SF-U和SF-S气凝胶的高斯分峰拟合曲线"

表1

SF气凝胶二级结构拟合结果"

样品名称 拟合系数
(R2)
二级结构
的类型
波数/
cm-1
相对含
量/%
SF-U
气凝胶
0.999 7 无规则卷曲 1 681 37.43
1 670
1 649
α-螺旋 1 661 12.30
1 640 50.27
β-折叠 1 630
1 618
SF-S
气凝胶
0.999 5 无规则卷曲 1 681 49.37
1 670
1 649
1 644
α-螺旋 1 660 6.88
β-折叠 1 635 43.75
1 620

图5

SF-U和SF-S气凝胶的XRD谱图"

[1] ZHU B, WANG H, LEOW W R, et al. Silk fibroin for flexible electronic devices[J]. Advanced Materials, 2016,28(22):4250-4265.
[2] KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015,46:86-110.
[3] QI Y, WANG H, WEI K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017,18(3):237-258.
[4] SU D, JIANG L, CHEN X, et al. Enhancing the gelation and bioactivity of injectable silk fibroin hydrogel with laponite nanoplatelets[J]. ACS Applied Materials & Interfaces, 2016,8(15):9619-9628.
pmid: 26989907
[5] SOMMER M R, VETSCH J R, LEEMANN J, et al. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017,105(7):2074-2084.
[6] 王宗乾, 杨海伟, 汤立洋, 等. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018,39(11):14-19.
WANG Zongqian, YANG Haiwei, TANG Liyang, et al. Preparation and characterization of silk fibroin/polyvinyl alcohol composite membrane[J]. Journal of Textile Research, 2018,39(11):14-19.
[7] WANG S, ZHANG Y, WANG H, et al. Preparation, characterization and biocompatibility of electrospinning heparin-modified silk fibroin nanofibers[J]. International Journal of Biological Macromolecules, 2011,48(2):345-353.
[8] WEN X, PENG X, FU H, et al. Preparation and in vitro evaluation of silk fibroin microspheres produced by a novel ultra-fine particle processing system[J]. International Journal of Pharmaceutics, 2011,416(1):195-201.
pmid: 21741461
[9] TSIORIS K, RAJA W K, PRITCHARD E M, et al. Fabrication of silk microneedles for controlled-release drug delivery[J]. Advanced Functional Materials, 2012,22(2):330-335.
[10] SMIRNOVA I, GURIKOV P. Aerogel production: current status, research directions, and future opportunities[J]. The Journal of Supercritical Fluids, 2018,134:228-233.
[11] MALEKI H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016,300:98-118.
[12] STERGAR J, MAVER U. Review of aerogel-based materials in biomedical applications[J]. Journal of Sol-Gel Science and Technology, 2016,77(3):738-752.
[13] MALEKI H, HUESING N. Silica-silk fibroin hy-brid (bio) aerogels: two-step versus one-step hybridization[J]. Journal of Sol-Gel Science and Technology, 2019. DOI: 10.1007/s10971-019-04933-4.
pmid: 23833395
[14] MARIN M A, MALLEPALLY R R, MCHUGH M A. Silk fibroin aerogels for drug delivery applications[J]. The Journal of Supercritical Fluids, 2014,91:84-89.
doi: 10.1016/j.supflu.2014.04.014
[15] ZHAO S, MALFAIT W J, GUERRERO-ALBURQUERQUE N, et al. Biopolymer aerogels and foams: chemistry, properties, and applications[J]. Angewandte Chemie International Edition, 2018,57(26):7580-7608.
[16] WU F, ZHU Y, CHEN Y, et al. Preparation and characterization of silk fibroin aerogel[J]. Journal of Donghua University(English Edition), 2018,35(1):16-20.
[17] GOIMIL L, SANTOS-ROSALES V, DELGADO A, et al. scCO2-foamed silk fibroin aerogel/poly(ε-caprolactone) scaffolds containing dexamethasone for bone regeneration[J]. Journal of CO2 Utilization, 2019,31:51-64.
[18] MALLEPALLY R R, MARIN M A, SURAMPUDI V, et al. Silk fibroin aerogels: potential scaffolds for tissue engineering applications[J]. Biomedical Materials, 2015.DOI: 10.1088/1748-6041/10/3/035002.
[19] WANG H Y, ZHANG Y Q. Effect of regeneration of liquid silk fibroin on its structure and characteriza-tion[J]. Soft Matter, 2013,9(1):138-145.
[20] MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure: an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018,10(26):22718-22730.
[21] MALEKI H, WHITMORE L, HUESING N. Novel multifunctional polymethylsilsesquioxane-silk fibroin aerogel hybrids for environmental and thermal insulation applications[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018,6(26):12598-12612.
doi: 10.1039/c8ta02821d pmid: 30713688
[22] YETISKIN B, OKAY O. High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties[J]. International Journal of Biological Macromolecules, 2019,122:1279-1289.
pmid: 30227202
[23] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018,39(4):69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Influence of degumming on solution of silk fiber and property of fibroin[J]. Journal of Textile Research, 2018,39(4):69-76.
[24] WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fibroin[J]. The Journal of The Textile Institute, 2019,110(1):134-140.
[25] GUAN Y, YANG X, WANG L, et al. A novel silk/polyester woven small diameter arterial prosjournal: degumming and the influence on cytocompatibility[J]. Fibers and Polymers, 2015,16(7):1533-1539.
[26] JIANG F, HSIEH Y L. Amphiphilic superabsorbent cellulose nanofibril aerogels[J]. Journal of Materials Chemistry A: Material for Energy and Sustainability, 2014,2(18):6337-6342.
[27] ZHANG R, GUO J, LIU Y, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers[J]. Carbohydrate Polymers, 2018,189:72-78.
doi: 10.1016/j.carbpol.2018.02.013 pmid: 29580428
[28] WANG Z, YANG H, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019,163:144-153.
[29] BETZ M, GARCÍA-GONZÁLEZ C A, SUBRAHMANYAM R P, et al. Preparation of novel whey protein-based aerogels as drug carriers for life science applications[J]. The Journal of Supercritical Fluids, 2012,72:111-119.
[30] FLOREN M L, SPILIMBERGO S, MOTTA A, et al. Carbon dioxide induced silk protein gelation for biomedical applications[J]. Biomacromolecules, 2012,13(7):2060-2072.
doi: 10.1021/bm300450a pmid: 22657735
[31] YETISKIN B, OKAY O. High-strength silk fibroin scaffolds with anisotropic mechanical properties[J]. Polymer, 2017,112:61-70.
[32] AK F, OZTOPRAK Z, KARAKUTUK I, et al. Macroporous silk fibroin cryogels[J]. Biomacromolecules, 2013,14(3):719-727.
doi: 10.1021/bm3018033 pmid: 23360211
[33] WANG K, LI R, MA J H, et al. Extracting keratin from wool by using L-cysteine[J]. Green Chemistry, 2016,18(2):476-481.
[34] 赵明宇, 刘海辉, 王学晨, 等. 角蛋白/多壁碳纳米管复合纤维的制备[J]. 纺织学报, 2017,38(2):21-25.
ZHAO Mingyu, LIU Haihui, WANG Xuechen, et al. Preparation of keratin/multi-walled carbon nanotubes composite fibers[J]. Journal of Textile Research, 2017,38(2):21-25.
[35] LAWRENCE B D, OMENETTO F, CHUI K, et al. Processing methods to control silk fibroin film biomaterial features[J]. Journal of Materials Science, 2008,43(21):6967-6985.
[36] HA S W, TONELLI A E, HUDSON S M. Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning[J]. Biomacromolecules, 2005,6(3):1722-1731.
doi: 10.1021/bm050010y pmid: 15877399
[37] NAM J, PARK Y H. Morphology of regenerated silk fibroin: effects of freezing temperature, alcohol addition, and molecular weight[J]. Journal of Applied Polymer Science, 2001,81(12):3008-3021.
doi: 10.1002/(ISSN)1097-4628
[38] NOGUEIRA G M, DEMORAES M A, RODAS A C D, et al. Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective[J]. Materials Science and Engineering: C, 2011,31(5):997-1001
doi: 10.1016/j.msec.2011.02.019
[39] LU Q, HU X, WANG X, et al. Water-insoluble silk films with silk I structure[J]. Acta Biomaterialia, 2010,6(4):1380-1387.
doi: 10.1016/j.actbio.2009.10.041
[40] MING J, ZUO B. Silk I structure formation through silk fibroin self-assembly[J]. Journal of Applied Polymer Science, 2012,125(3):2148-2154.
doi: 10.1002/app.36354
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[3] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[4] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[5] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[6] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[7] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[8] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[9] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[10] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[11] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/ 聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[12] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[13] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[14] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[15] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!