纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 1-7.doi: 10.13475/j.fzxb.20190407407

• 纤维材料 •    下一篇

竹红菌素-聚(甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能

王婷婷1, 刘梁1, 曹秀明2, 王清清1,2()   

  1. 1.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    2.江苏阳光股份有限公司, 江苏 无锡 214400
  • 收稿日期:2019-04-28 修回日期:2020-02-03 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 王清清
  • 作者简介:王婷婷(1997—),女,硕士生。主要研究方向为功能纳米纤维材料。
  • 基金资助:
    国家自然科学基金青年基金项目(51603090);中国博士后科学基金项目(2018M630516);江苏省政策引导类计划(国际科技合作)项目(BZ2018032)

Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers

WANG Tingting1, LIU Liang1, CAO Xiuming2, WANG Qingqing1,2()   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangsu Sunshine Co., Ltd., Wuxi, Jiangsu 214400, China
  • Received:2019-04-28 Revised:2020-02-03 Online:2020-05-15 Published:2020-06-02
  • Contact: WANG Qingqing

摘要:

针对抗生素类药物在耐药性菌株处理中应用的局限性,在聚(甲基丙烯酸甲酯-co-甲基丙烯酸)纺丝液中添加光敏剂竹红菌素,采用静电纺丝法制备具有光动力广谱抗菌功能的纳米纤维膜。借助扫描电子显微镜、静态接触角测试、傅里叶变换红外光谱仪和热重分析仪等分析添加竹红菌素前后纳米纤维的形貌、润湿性能、化学结构和热稳定性,并研究了添加竹红菌素的纳米纤维膜对金黄色葡萄球菌和大肠杆菌的抗菌能力。结果表明:添加竹红菌素后纳米纤维直径变粗,静态接触角增加约20°,润湿性能下降,热稳定性略有降低;纤维膜在可见光下具有良好的光动力氧化性能,在光照下对金黄色葡萄球菌和大肠杆菌的抑菌率分别达99.97%和54.41%。

关键词: 竹红菌素, 聚(甲基丙烯酸甲酯-co-甲基丙烯酸), 纳米纤维, 静电纺丝, 光动力抗菌性能

Abstract:

To overcome the limitation of antibiotic drugs in the treatment of drug resistant strains, photosensitizer hypocrellin(Hc)was added to the poly(methyl methacrylate-co-methacrylic acid) electrospinning solution to prepare the photodynamic broad-spectrum antibacterial nanofibrous membrane. The overall morphology, wettability, chemical structure and thermostability of the nanofibers before and after the addition of Hc were compared by scanning electron microscopy, static contact angle test, Fourier transform infrared spectrometry and thermogravimetric analysis, and the antibacterial ability to S. aureus and E. coli were also investigated. The results show that the addition of Hc causes increase in the diameter of nanofibers, increases its static contact angle by approximately 20° and decreases its wettability, slightly decreases its thermostability, and imparts good substrate oxidation under visible light. The antibacterial effect against S. aureus and E. coli reached 99.97% and 54.41% under light conditions, respectively.

Key words: hypocrellin, poly(methyl methacrylate-co-methacrylic acid), nanofiber, electrospinning, photodynamic antibacterial property

中图分类号: 

  • TQ342

图1

不同Hc质量分数的纳米纤维膜的SEM照片(×5 000)"

表1

PM和Hc-PM纳米纤维膜的直径分布"

Hc质量分数/% 平均直径/nm 直径标准差/nm 接触角/(°)
0.0 337.25 123.44 109.2
0.1 358.20 146.28 129.2
0.3 398.20 86.83 127.3
0.5 500.61 182.98 131.4

图2

竹红菌素溶液和纳米纤维膜的紫外光谱图"

图3

PM和Hc-PM纳米纤维膜的红外光谱图"

图4

PM和Hc-PM膜的热稳定性曲线"

图5

光照Hc-PM膜与TEMP生成的TEMPO的EPR信号"

图6

Hc-PM纳米纤维膜的KI溶液紫外吸收光谱"

图7

PM和Hc-PM膜在351 nm处的KI溶液紫外吸收图"

图8

不同质量分数Hc-PM膜在351 nm处KI溶液紫外吸收曲线"

表2

PM和Hc-PM膜对金黄色葡萄球菌及大肠杆菌的抗菌效果"

Hc质量分数/% 暗室抑菌率/% 光照抑菌率/%
金黄色葡萄球菌 大肠杆菌 金黄色葡萄球菌 大肠杆菌
0.0 4.12±0.19 5.74±1.54 9.28±0.37 11.48±1.94
0.5 0.90±0.05 10.29±1.53 99.97±0.03 54.41±16.72
[1] LAXMINARAYAN R, MATSOSO P, PANT S, et al. Access to effective antimicrobials: a worldwide challenge[J]. The Lancet, 2015,387:168-175.
[2] RENWICK M J, SIMPKIN V, MOSSIALOS E. Targeting innovation in antibiotic drug discovery and development: the need for a one health-one Europe-one world framework[M]. Europe: European Observatory on Health Systems and Policies, 2016: 9-12.
[3] WAINWRIGHT M. Photodynamic antimicrobial chemotherapy (PACT)[J]. Journal of Antimicrobial Chemotherapy, 1998,42(1):13-28.
[4] CIEPLIK F, DENG D M, CRIELAARD W, et al. Antimicrobial photodynamic therapy: what we know and what we don't[J]. Critical Reviews in Microbiology, 2018,44:571-589.
pmid: 29749263
[5] ABRAHAMSE H, HAMBLIN M R. New photosensitizers for photodynamic therapy[J]. Biochemical Journal, 2016,473(4):347-364.
doi: 10.1042/BJ20150942
[6] WAN X Y, CHEN Y T. Hypocrellin a: a new drug for photochemotherapy[J]. Chinese Science Bulletin, 1981,26(11):1040-1042.
[7] DIWU Z J, LOWN J W. Hypocrellins and their use in photosensitization[J]. Photochemistry and Photobiology, 1990,52(3):609-616.
doi: 10.1111/j.1751-1097.1990.tb01807.x pmid: 2284353
[8] 刘岩岩, 王雪松, 张宝文. 竹红菌素类光动力药物[J]. 化学进展, 2008(9):1345-1352.
LIU Yanyan, WANG Xuesong, ZHANG Baowen. Hypocrellin-based photodynamic sensitizers[J]. Progress in Chemistry, 2008(9):1345-1352.
[9] YU C, CHEN S, ZHANG M, et al. Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes[J]. Photochemistry and Photobiology, 2001,73(5):482-488.
pmid: 11367568
[10] 仇亦然. 竹红菌素的提取分离及其脂质体的制备研究[D]. 无锡:江南大学, 2012: 31-45.
QIU Yiran. Extraction and separation of hypocrellin and preparation of its liposomes[D]. Wuxi:Jiangnan University, 2012: 31-45.
[11] ZHOU L, WANG W, WEI S H, et al. Encapsulation of hydrophobic anticancer drug in nano-scale porous ceramic materials for photodynamic therapy[J]. Journal of Porous Materials, 2011,18(4):517-522.
[12] LI Z B, WANG J G, CHEN J R, et al. Hypocrellin B doped and pH-responsive silica nanoparticles for photodynamic therapy[J]. Science China (Chemistry), 2010,53(9):1994-1999.
[13] PARAMAGURU G, SOLOMON R V, VENUVANALINGAM P, et al. Spectroscopic studies on TiO2enhanced binding of hypocrellin B with DNA[J]. Journal of Fluorescence, 2011,21(5):1887-1895.
pmid: 21448702
[14] 王艳. 水溶性聚合物溶液静电纺丝的研究[D]. 北京:北京化工大学, 2015: 4-7.
WANG Yan. Water-soluble polymer solution electrospinning[D]. Beijing: Beijing University of Chemical Technology, 2015: 4-7.
[15] DOLANSKY J, HENKE P, KUBAT P, et al. Polystyrene nanofiber materials for visible light-driven dual antibacterial action via simultaneous photogeneration of NO and O2(1Δg) [J]. ACS Applied Materials & Interfaces, 2015,7(41):22980-22989.
doi: 10.1021/acsami.5b06233 pmid: 26430799
[16] 张权, 李深, 王清清, 等. 甲基丙烯酸甲酯/甲基丙烯酸共聚物光敏抗菌型纳米纤维膜的制备及其性能表征[J]. 纺织学报, 2017,38(2):1-6.
ZHANG Quan, LI Shen, WANG Qingqing, et al. Preparation and characterization of photodynamic antimicrobial poly(methyl methacrylate-co-methacrylic acid) electrospun nanofibrous membrane[J]. Journal of Textile Research, 2017,38(2):1-6.
[17] 李琪, 魏取福, 汪莹莹, 等. 锦纶6/有机蒙脱土复合纳米纤维的制备与表征[J]. 纺织学报, 2007,28(11):1-4.
LI Qi, WEI Qufu, WANG Yingying, et al. Preparation and characterization of PA6/organical montmorillonite composite nanofibers[J]. Journal of Textile Research, 2007,28(11):1-4.
[18] 丁慧颖. 光动力治疗基本原理及其应用[M]. 北京: 化学工业出版社, 2014: 103-104.
DING Huiying. Photodynamic therapy: basic principles and applications[M]. Beijing: Chemical Industry Press, 2014: 103-104.
[19] BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004 pmid: 20100560
[20] WANG T T, XU L, SHEN H Y, et al. Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose[J]. Cellulose, 2019.DOI: 10.1007/S10570-019-02852-9.
doi: 10.1007/s10570-014-0471-4 pmid: 26412951
[21] 蒋华义, 张亦翔, 梁爱国, 等. 材料表面润湿性的影响因素及预测模型[J]. 表面技术, 2018,47(1):60-65.
JIANG Huayi, ZHANG Yixiang, LIANG Aiguo, et al. Influencing factors and prediction model of material surface wettability[J]. Surface Technology, 2018,47(1):60-65.
[22] ZHANG H Y, ZHAO H X, ZHANG Z Y. Studying dynamic process of photosensitization by ESR method[J]. Science in China (Serious C), 1997,40(4):356-362.
[23] HAMBLIN M R, ABRAHAMSE H. Inorganic salts and antimicrobial photodynamic therapy: mechanistic conundrums?[J]. Molecules, 2018,23:6-10.
[24] HENKE P, KOZAK H, ARTEMENKO A, et al. Superhydrophilic polystyrene nanofiber materials generating O2(1Δg): postprocessing surface modifications efficient antibacterial effect [J]. ACS Applied Materials & Interfaces, 2014,6(15):13007-13014.
doi: 10.1021/am502917w pmid: 25014212
[25] MAISCH T, SZEIMIES R M, JORI G, et al. Antibacterial photodynamic therapy in dermatology[J]. Photochemical & Photobiological Sciences, 2004,3(10):907-917.
doi: 10.1039/b407622b pmid: 15480480
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[8] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[9] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[10] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[11] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[12] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[13] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[14] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[15] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!