纺织学报 ›› 2020, Vol. 41 ›› Issue (05): 72-78.doi: 10.13475/j.fzxb.20190806807

• 纺织工程 • 上一篇    下一篇

基于低秩分解的织物疵点检测

杨恩君, 廖义辉, 刘安东(), 俞立   

  1. 浙江工业大学 信息工程学院, 浙江 杭州 310023
  • 收稿日期:2019-08-27 修回日期:2020-01-22 出版日期:2020-05-15 发布日期:2020-06-02
  • 通讯作者: 刘安东
  • 作者简介:杨恩君(1995—),男,硕士生。主要研究方向为瑕疵检测和图像处理。
  • 基金资助:
    国家自然科学基金项目(61973275);国家自然科学基金-浙江省两化融合联合基金项目(U1709213)

Detection for fabric defects based on low-rank decomposition

YANG Enjun, LIAO Yihui, LIU Andong(), YU Li   

  1. College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • Received:2019-08-27 Revised:2020-01-22 Online:2020-05-15 Published:2020-06-02
  • Contact: LIU Andong

摘要:

针对传统低秩分解法导致的图像信息过度丢失和织物弹性导致的歪斜问题,提出一种基于Beta范数的改进低秩分解检测方法。首先,通过提取织物图的基元特征构造先验信息图。其次,采用Beta范数代替低秩分解中的核范数,并由先验信息图引导低秩分解方法对织物图进行分解,解决了传统低秩分解方法中核范数导致的图像信息过度丢失的问题。进而,提取织物图的方向梯度直方图(HOG)特征构造后验信息图,并将后验信息图和通过低秩分解得到的稀疏分量进行哈达玛乘积获得显著图,解决了织物弹性导致的歪斜问题。最后,利用最优阈值分割得到疵点图。将实验结果与已有的4种方法进行对比,结果表明,该方法可以有效抑制歪斜干扰,且检测时间更短。

关键词: 织物疵点, 疵点检测, 低秩分解, 后验信息图, Beta范数, 歪斜干扰

Abstract:

Aiming at excessive loss of image information in fabric defect detection caused by the commonly used low-rank decomposition method and the weft skew caused by fabric elasticity, an improved low-rank decomposition detection method based on Beta norm was proposed. This method starts by constructing a prior map by extracting the texton feature of the fabric image. Second, a Beta norm was used to replace the nuclear norm in the low-rank decomposition process, whereas the low-rank decomposition was guided by the prior map to decompose the fabric image. Compared with the nuclear norm, it was found that the proposed method does not lead to excessive loss of image information. Furthermore, a posterior map was constructed by extracting the HOG (histogram of oriented gradients) feature of the fabric image, and a saliency map was obtained by the Hadamard product between the posterior map and the sparse component obtained by the low-rank decomposition which can solve the skew problem caused by fabric elasticity. Finally, optimal threshold segmentation was used to obtain the defect figure. Compared with the existing four methods, the experimental results demonstrate that the proposed method can effectively suppress the skewness in the fabric and the detection time is shorter.

Key words: fabric defect, defect detection, low-rank decomposition, posterior map, Beta norm, skew interference

中图分类号: 

  • TP391

图1

本文方法流程图"

图2

后验信息图和显著图"

图3

星型纹理检测结果"

图4

方格型纹理检测结果"

图5

单张织物图的用时对比"

表1

平均用时对比"

算法来源 平均用时/s
文献[15]
文献[19]
文献[20]
本文
0.621
0.397
0.478
0.245

图6

FID数据集的总用时对比"

表2

算法稳定性对比"

算法来源 标准差
文献[15]
文献[19]
文献[20]
本文
0.445
0.044
0.036
0.032
[1] TONG L, WONG W K, KWONG C K. Differential evolution-based optimal Gabor filter model for fabric inspection[J]. Neurocomputing, 2016,173:1386-1401.
doi: 10.1016/j.neucom.2015.09.011
[2] KUMAR A. Computer-vision-based fabric defect detection: a survey[J]. IEEE Transactions on Industrial Electronics, 2008,55(1):348-363.
doi: 10.1109/TIE.1930.896476
[3] 杜帅, 李岳阳, 王孟涛, 等. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019,40(2):38-44.
DU Shuai, LI Yueyang, WANG Mengtao, et al. Fabric defect detection based on improved local adaptive contrast method[J]. Journal of Textile Research, 2019,40(2):38-44.
[4] REDDY R O K, REDDY B E, REDDY E K. Classifying similarity and defect fabric textures based on GLCM and binary pattern schemes[J]. International Journal of Information Engineering and Electronic Business, 2013,5(5):25.
doi: 10.5815/ijieeb
[5] ZHU D, PAN R, GAO W, et al. Yarn-dyed fabric defect detection based on autocorrelation function and GLCM[J]. Autex Research Journal, 2015,15(3):226-232.
doi: 10.1515/aut-2015-0001
[6] 胡克满, 罗少龙, 胡海燕 . 应用 Canny 算子的织物疵点检测改进算法[J]. 纺织学报, 2019,40(1):153-158.
HU Keman, LUO Shaolong, HU Haiyan. Improved algorithm for fabric defect detection based on Canny operator[J]. Journal of Textile Research, 2019,40(1):153-158.
[7] VERMAAK H, NSENGIYUMVA P, LUWES N. Using the dual-tree complex wavelet transform for improved fabric defect detection[J]. Journal of Sensors, 2016,2016:1-8.
[8] JING J, FAN X, LI P. Automated fabric defect detection based on multiple Gabor filters and KPCA[J]. International Journal of Multimedia and Ubiquitous Engineering, 2016,11(6):93-106.
[9] 李敏, 崔树芹, 谢治平. 高斯混合模型在印花织物疵点检测中的应用[J]. 纺织学报, 2015,36(8):94-98.
LI Min, CUI Shuqin, XIE Zhiping. Application of Gaussian mixture model on defect detection of print fabric[J]. Journal of Textile Research, 2015,36(8):94-98.
[10] SUSAN S, SHARMA M. Automatic texture defect detection using gaussian mixture entropy modeling[J]. Neurocomputing, 2017,239:232-237.
doi: 10.1016/j.neucom.2017.02.021
[11] 刘威, 常兴治, 梁久祯, 等. 基于局部最优分析的纺织品瑕疵检测方法[J]. 模式识别与人工智能, 2018,31(2):182-189.
LIU Wei, CHANG Xingzhi, LIANG Jiuzhen, et al. Fabric defect detection based on local optimum analysis[J]. Pattern Recognition and Artificial Intelligence, 2018,31(2):182-189.
[12] JIA L, ZHANG J, CHEN S, et al. Fabric defect inspection based on lattice segmentation and lattice templates[J]. Journal of the Franklin Institute, 2018,355(15):7764-7798.
doi: 10.1016/j.jfranklin.2018.07.005
[13] JIA L, CHEN C, LIANG J, et al. Fabric defect inspection based on lattice segmentation and Gabor filtering[J]. Neurocomputing, 2017,238:84-102.
doi: 10.1016/j.neucom.2017.01.039
[14] JIA L, LIANG J. Fabric defect inspection based on isotropic lattice segmentation[J]. Journal of the Franklin Institute, 2017,354(13):5694-5738.
doi: 10.1016/j.jfranklin.2017.05.035
[15] CHETVERIKOV D. Residual of resonant SVD as salient feature [C]//International conference on computer vision and graphics. Berlin: Heidelberg, 2008: 143-153.
[16] BOUWMANS T, JAVED S, ZHANG H, et al. On the applications of robust PCA in image and video processing[J]. Proceedings of the IEEE, 2018,106(8):1427-1457.
doi: 10.1109/PROC.5
[17] 李春雷, 高广帅, 刘洲峰, 等. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017,38(3):149-154.
LI Chunlei, GAO Guangshuai, LIU Zhoufeng, et al. Fabric defect detection algorithm based on histogram of oriented gradient and low-rank decomposition[J]. Journal of Textile Research, 2017,38(3):149-154.
doi: 10.1177/004051756803800207
[18] LI C, GAO G, LIU Z, et al. Defect Detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019,7:83962-83973.
doi: 10.1109/Access.6287639
[19] CAO J, ZHANG J, WEN Z, et al. Fabric defect inspection using prior knowledge guided least squares regression[J]. Multimedia Tools and Applications, 2017,76(3):4141-4157.
doi: 10.1007/s11042-015-3041-3
[20] CAO J, WANG N, ZHANG J, et al. Detection of varied defects in diverse fabric images via modified RPCA with noise term and defect prior[J]. International Journal of Clothing Science and Technology, 2016,28(4):516-529.
doi: 10.1108/IJCST-10-2015-0117
[21] ZHU S C, GUO C E, WANG Y, et al. What are textons?[J]. International Journal of Computer Vision, 2005,62(1-2):121-143.
doi: 10.1007/s11263-005-4638-1
[22] CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM (JACM), 2011,58(3):11.
[23] KANG Z, PENG C, CHENG Q. Robust PCA via nonconvex rank approximation[C] //2015 IEEE international conference on data mining(ICDM). Atlantic: IEEE, 2015: 211-220.
[1] 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66.
[2] 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44.
[3] 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56.
[4] 杜帅, 李岳阳, 王孟涛, 罗海驰, 蒋高明. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(02): 38-44.
[5] 胡克满, 罗少龙, 胡海燕. 应用Canny算子的织物疵点检测改进算法[J]. 纺织学报, 2019, 40(01): 153-158.
[6] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[7] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[8] 何峰 周亚同 赵翔宇 刘猛 张忠伟. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131.
[9] 王传桐 胡峰 徐启永 吴雨川 余联庆. 采用Gabor滤波簇和等距映射算法的织物疵点检测方法[J]. 纺织学报, 2017, 38(03): 162-167.
[10] 李春雷 高广帅 刘洲峰 刘秋丽 李文羽. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(03): 149-154.
[11] 李敏 崔树芹 陈佳. 应用视觉显著性的小提花织物疵点检测[J]. 纺织学报, 2016, 37(12): 38-42.
[12] 尉苗苗 李岳阳 蒋高明 丛洪莲. 应用最优Gabor滤波器的经编织物疵点检测[J]. 纺织学报, 2016, 37(11): 48-54.
[13] 石美红 张正 郭仙草 陈永当. 基于显著纹理特征的织物疵点检测方法[J]. 纺织学报, 2016, 37(10): 42-049.
[14] 厉征鑫 周建 潘如如 刘建立 高卫东. 应用单演小波分析的织物疵点检测[J]. 纺织学报, 2016, 37(09): 59-64.
[15] 景军锋 范晓婷 李鹏飞 张蕾 张宏伟. 应用Gaussian回代交替方向图像分解算法的色织物疵点检测[J]. 纺织学报, 2016, 37(06): 136-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!