纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 112-117.doi: 10.13475/j.fzxb.20191100106

• 服装工程 • 上一篇    下一篇

基于最大衰减因子模型的服装热防护性能预测

何佳臻1,2, 薛萧昱1, 王敏3, 李俊3()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家重点实验室,江苏 苏州 215021
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2019-11-01 修回日期:2020-02-26 出版日期:2020-06-15 发布日期:2020-06-28
  • 通讯作者: 李俊
  • 作者简介:何佳臻(1988—),女,副教授,博士。主要研究方向为防护服装的性能评价与功能开发。
  • 基金资助:
    国家自然科学基金项目(51906169);国家自然科学基金项目(51576038);中国博士后科学基金资助项目(2017M621816);中国博士后科学基金资助项目(2019T120455);教育部人文社会科学研究青年基金项目(18YJC760021);江苏省高等学校自然科学研究面上项目(17KJB540003)

Predicting thermal protective performance of clothing based on maximum attenuation factor model

HE Jiazhen1,2, XUE Xiaoyu1, WANG Min3, LI Jun3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215021, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2019-11-01 Revised:2020-02-26 Online:2020-06-15 Published:2020-06-28
  • Contact: LI Jun

摘要:

为解决全尺度燃烧假人实验测试成本高、实验效率低,以及尚未与织物小样测试统一联合表征等难题,利用新型的热防护性能评估模型:二级烧伤最大衰减因子模型,对热防护服装的织物试样测试与燃烧假人实验进行同步研究,并建立基于织物试样测试的服装整体热防护性能预测模型。结果表明:防护织物的热防护性能与其服装整体的热防护性能具有显著相关性;将织物热防护性能值、服装平均衣下空气层厚度以及服装热暴露时间作为预测模型输入参数,可以实现服装热防护性能值以及人体皮肤烧伤百分比的预测;经模型验证发现,服装实测热防护性能值与其预测值间的相对误差仅为5.1%。

关键词: 热防护服装, 热防护性能, 是大衰减因子, 性能预测, 皮肤烧伤

Abstract:

It is well recognized that the full-scale instrumented flame manikin test is exceptionally costly, inefficient to perform, and it does not have a unified evaluation index as compared to the bench-scale test. This study aimed to solve this problem by adopting a new developed evaluation model, maximum attenuation factor, to investigate both the bench-scale test and the full-scale flame manikin test, and to establish a prediction model of thermal protective performance of clothing based on the fabric tests. Results show that there is a significant correlation between thermal protective performance of fabrics and clothing. When the maximum attenuation factor value of the fabric, the average air gap thickness of clothing and its exposure time are used as inputting parameters, the thermal protective performance of clothing and the percentage of skin burn injury can be well predicted. The absolute error between predicted MAF and the experimental value is only 5.1%.

Key words: thermal protective clothing, thermal protective performance, maximum attenuation factor, performance prediction, skin burn

中图分类号: 

  • TS941.73

表1

实验面料的基本性能"

服装
编号
纤维
成分
织物
组织
面密度/
(g·m-2)
厚度/
mm
透气性/
(cm3·
cm-2·s-1)
G1 100% Nomex?IIIA 斜纹 205.3 0.60 7.6
G2 100% Nomex?IIIA 平纹 252.3 0.65 5.6
G3 98% meta-aramid,2%CF 平纹 158.2 0.51 39.4
G4 98% meta-aramid,2%CF 斜纹 216.1 0.61 16.1
G5 98% PSA,2% CF 平纹 152.4 0.55 16.9
G6 93%PSA,5% para-
aramid,2% CF
斜纹 258.2 0.62 7.0
G7 100% 阻燃棉 斜纹 325.4 0.73 9.6
G8 外层100% Nomex?ⅢA, 防水透气层80%Nomex?+20% Kelvar?水刺毡覆PTFE膜,隔热层100% meta-aramid针刺毡绗缝50% meta-aramid+50%FR粘胶舒适层 3层
组合
503.7 2.47 0.3
G9 外层100% Nomex?ⅢA,防水透气层80% Nomex?+20% Kelvar?水刺毡覆PTFE膜,隔热层100% meta-aramid针刺毡绗缝50% meta-aramid+50%FR粘胶舒适层 3层
组合
595.1 3.15 0

图1

传感器能量响应曲线和Stoll准则曲线示意图以及MAF的计算示例"

图2

实测服装εOMAF值和织物εMAF值的相关性"

图3

服装εOMAF的实测值与预测值比较"

图4

服装εOMAF值与人体皮肤烧伤百分比的关系"

表2

服装热防护性能预测值和实测值比较"

指标 服装εOMAF 衣下皮肤烧伤百分比/%
预测值 0.62 16.5
实测值 0.59 14.3
[1] TALUKDAR P, DAS A, ALAGIRUSAMY R. Heat and mass transfer through thermal protective clothing-A review[J]. International Journal of Thermal Sciences, 2016,106:32-56.
[2] LU Y, SONG G, WANG F. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test[J]. The Annals of Occupational Hygiene, 2015,59(2):232-242.
pmid: 25349371
[3] HE J, LU Y, CHEN Y, et al. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge[J]. Journal of Hazardous Materials, 2017,338:76-84.
pmid: 28531661
[4] SCHOPPEE M, WELSFORD J, ABBOTT N. Protection offered by lightweight clothing materials to the heat of a fire[M]. Philadelphia: American Society for Testing and Materials, 1986: 340-357.
[5] SONG G, BARKER R, GRIMES D, et al. Comparison of methods used to predict the burn injuries in tests of thermal protective fabrics[J]. Journal of ASTM International, 2005,2(2):1-10.
[6] LEE C, KIM I Y, WOOD A. Investigation and correlation of manikin and bench-scale fire testing of clothing systems[J]. Fire and Materials, 2002,26(6):269-78.
[7] WANG M, LI X, LI J. Correlation of bench scale and manikin testing of fire protective clothing with thermal shrinkage effect considered[J]. Fibers and Polymers, 2015,16(6):1370-1377.
[8] HE J, WANG M, LI J. Determination of the thermal protective performance of clothing during bench-scale fire test and flame engulfment test: evidence from a new index[J]. Journal of Fire Sciences, 2015,33(3):218-231.
[9] HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016,86(3):235-244.
[10] SONG G. Clothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
[11] WANG M, LI X, LI J, et al. A new approach to quantify the thermal shrinkage of fire protective clothing after flash fire exposure[J]. Textile Research Journal, 2016,86(6):580-592.
[12] 丁明, 王磊, 毕锐. 基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J]. 电力系统保护与控制, 2012,40(11):93-99.
DING Ming, WANG Lei, BI Rui. A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J]. Power System Protection and Control, 2012,40(11):93-99.
[13] CAMENZIND M, DALE D, ROSSI R. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO stan-dard[J]. Fire and Materials, 2007,31:285-295
[1] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/ 封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[2] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[3] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[4] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[5] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[6] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[7] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[8] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[9] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[10] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[11] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[12] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
[13] 苏云 李俊. 火灾环境下防水透气层对消防服热湿防护性能的影响[J]. 纺织学报, 2017, 38(02): 152-158.
[14] 张梦莹 苗勇 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(06): 171-176.
[15] 黄冬梅 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!