纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 61-68.doi: 10.13475/j.fzxb.20190702408
WANG Jiugen1(), GUO Hao1, HONG Yufang1, CHEN Fanghua2
摘要:
为准确预测自润滑关节轴承衬垫的弹性参数,结合衬垫的压紧预处理过程,建立了修正的衬垫特征体元(RVE)细观几何模型。结合桥联理论建立了相应的轴承衬垫弹性性能分析模型。用解析法分别计算了平纹、斜纹、五枚二飞缎纹3种衬垫的弹性参数。通过与其他实验数据比较得知,平纹衬垫、斜纹衬垫、五枚二飞缎纹衬垫弹性参数计算值与实验值最大相对误差分别为4.76%、5.47%、4.39%。对用于计算不同纤维束弹性常数时,若纤维束中纤维和基体沿轴线方向弹性模量比值较大,则桥联参数α取值比β小,所得结果较为准确。若实验条件允许,可通过对纤维束进行简单拉压剪切实验确定α、β值。
中图分类号:
[1] | KIM Byung Chul, LEE Dai Gil. Endurance and performance of a composite spherical bearing[J]. Composite Structures, 2008,87(1):71-79. |
[2] | GERMANEAU A, PEYRUSEIGT F, MISTOU S, et al. 3D mechanical analysis of aeronautical plain bearings: validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography[J]. Optics and Lasers in Engineering, 2010,48(6):676-683. |
[3] | 杨育林, 祖大磊, 黄世军. 自润滑关节轴承现状及发展[J]. 轴承, 2009(1):58-61. |
YANG Yulin, ZU Dalei, HUANG Shijun. Status and development of self-lubricating spherical plain bearings[J]. Bearing, 2009(1):58-61. | |
[4] | 杨育林, 谷大鹏, 齐效文, 等. 织物自润滑衬垫的研究现状与展望[J]. 轴承, 2010(11):50-54. |
YANG Yulin, GU Dapeng, QI Xiaowen, et al. Research status and prospect of fabric self-lubricating liner[J]. Bearing, 2010(11):50-54. | |
[5] | HUANG Z M. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads[J]. Composites Part A (Applied Science and Manufacturing), 2002,33(2):253-266. |
[6] | 左中鹅, 王瑞, 徐磊. 基于有限单元法的平纹织物复合材料强度预测: 1. RVE的有限元模型[J]. 纺织学报, 2009,30(12):45-49. |
ZUO Zhong'e, WANG Rui, XU Lei. Mechanical strength prediction of plain woven fabric composite: 1. finite element model of composite RVE[J]. Journal of Textile Research, 2009,30(12):45-49. | |
[7] | 刘召磊, 沈雪瑾. 自润滑关节轴承斜纹织物衬垫弹性性能的分析模型[J]. 机械工程材料, 2011,35(5):96-100. |
LIU Zhaolei, SHEN Xuejin. Analysis model of the elastic properties of twill woven fabric liner of spherical plain bearing with self-lubricating[J]. Mechanical Engineering Materials, 2011,35(5):96-100. | |
[8] | 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013(9):69-74,78. |
WANG Dongning, LI Jialu, JIAO Yanan. 3D meso-geometrical model of plain weave fabric and finite element modeling under ballistic impact[J]. Journal of Materials Engineering, 2013(9):69-74,78. | |
[9] | 陈继刚, 薛亚红, 邱红亮. 芳纶/聚四氟乙烯纤维织物衬垫力学建模与性能计算[J]. 纺织学报, 2015,36(1):82-87. |
CHEN Jigang, XUE Yahong, QIU Hongliang. Mechanics modeling and performance calculation of aramid/polytetrafluoroethene fabric liner[J]. Journal of Textile Research, 2015,36(1):82-87. | |
[10] | LU J, QIU M, LI Y. Wear models and mechanical analysis of PTFE/Kevlar fabric woven liners used in radial spherical plain bearings[J]. Wear, 2016,364/365:57-72. |
[11] | TAN P, TONG L, STEVEN G P. Modelling for predicting the mechanical properties of textile composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 1997,28(11):903-922. |
[12] | HUANG Z. Strength of fibrous composites[M]. Hangzhou: Zhejiang University Press, 2011: 1-32. |
[13] | 张春春, 王艳超, 黄争鸣. 横观各向同性基体复合材料的等效弹性常数[J]. 应用数学和力学, 2018,39(7):750-765. |
ZHANG Chunchun, WANG Yanchao, HUANG Zhengming. Effective elastic properties of transversely isotropic matrix based composites[J]. Applied Mathematics and Mechanics, 2018,39(7):750-765. | |
[14] | LEE S K, BYUN J H, HONG S H. Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites[J]. Materials Science & Engineering A, 2003,347(1/2):346-358. |
[15] | CHEN Z R, YE L, KRUCKENBERG T. A micromechanical compaction model for woven fabric preforms: part I: single layer[J]. Composites Science and Technology, 2006,66(16):3254-3262. |
[16] | KHAN K A, UMER R. Modeling the viscoelastic compaction response of 3D woven fabrics for liquid composite molding processes[J]. Journal of Reinforced Plastics and Composites, 2017,36(18):1299-1315. |
[17] | WEI K, WANG Y, YANG X. Viscoelastic modeling of responses in the whole compaction process for woven fiber reinforcements[J]. International Journal of Applied Mechanics, 2018,10(2):1-18. |
[18] | SKF. AMPEP high performance plain bearings [DB/OL]. https://www.skf.com/binary/tcm:12-99107/0901d1968020a6fc-13089EN-_tcm_12-99107.pdf, 2012-09. |
[19] | TONG L, MOURITZ A P, BANNISTER M K. 3D fibre reinforced polymer composites[M]. Amsterdam:Elsevier Science, 2002: 219-236. |
[20] | 黄争鸣. 复合材料细观力学引论[M]. 北京: 科学出版社, 2004: 1-21. |
HUANG Zhengming. An introduction to mesomechanics of composite material[M]. Beijing: Science Press, 2004: 1-21. | |
[21] | SHEN X, GAO P, LIU Z, et al. Elastic properties of the fabric liner and their influence on the wear depth of the spherical plain bearing[J]. Journal of Nanomaterials, 2014(1):1-7. |
[1] | 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175-180. |
[2] | 张荣 冯志华 陆庆 陈晓明. 含纱疵纱线的气流引纬牵引特性分析[J]. 纺织学报, 2017, 38(11): 131-136. |
[3] | 王占山 吕利叶 张佳丽 杨育林 张芳芳. 聚四氟乙烯/芳纶破斜纹织物衬垫拉伸性能数值仿真[J]. 纺织学报, 2016, 37(07): 71-76. |
[4] | 辛三法 王新厚 胡守忠. 微纳米纤维的熔喷制作工艺[J]. 纺织学报, 2015, 36(07): 7-11. |
[5] | 张忠胜 刘晓艳 于伟东. 纺织纤维的弯曲疲劳理论及其应用[J]. 纺织学报, 2013, 34(5): 152-0. |
[6] | 薛文良;魏孟媛;陈革;程隆棣. 喷气织机主喷嘴内部流场的数值计算[J]. 纺织学报, 2010, 31(4): 124-127. |
[7] | 邹专勇;俞建勇;薛文良;刘丽芳;程隆棣. 喷气涡流纺工艺参数对气流场影响的数值计算[J]. 纺织学报, 2008, 29(4): 32-36. |
|