纺织学报 ›› 2020, Vol. 41 ›› Issue (06): 8-13.doi: 10.13475/j.fzxb.20190600506

• 纤维材料 • 上一篇    下一篇

氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能

王树博1,2, 秦湘普3, 石磊3, 庄旭品3(), 李振环1,2   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
    3.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2019-06-03 修回日期:2020-03-15 出版日期:2020-06-15 发布日期:2020-06-28
  • 通讯作者: 庄旭品
  • 作者简介:王树博(1994—),男,博士生。主要研究方向为纳米纤维制备和功能非织造材料。
  • 基金资助:
    国家自然科学基金资助项目(51873152)

Preparation and properties of proton exchange membrane made from graphene oxide quantum dots/polyacrylonitrile nanofiber composites

WANG Shubo1,2, QIN Xiangpu3, SHI Lei3, ZHUANG Xupin3(), LI Zhenhuan1,2   

  1. 1. School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University,Tianjin 300387, China
    3. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2019-06-03 Revised:2020-03-15 Online:2020-06-15 Published:2020-06-28
  • Contact: ZHUANG Xupin

摘要:

为提高全氟磺酸(Nafion)膜的质子传导率和尺寸稳定性,利用静电纺丝技术制备了氧化石墨烯量子点(GOQDs)/聚丙烯腈(PAN)纳米纤维膜,并通过Nafion溶液浸渍法制备了纳米纤维复合质子交换膜。借助扫描电子显微镜、共聚焦显微镜、热重分析仪和X射线衍射仪等对纳米纤维及复合膜的结构和性能进行表征。结果表明:GOQDs在PAN纳米纤维中均匀分布,GOQDs的加入减小了纳米纤维的直径;纳米纤维形成三维网络结构,对复合膜起到了骨架支撑作用,提高了复合膜的尺寸稳定性,同时提高了复合膜的热稳定性和吸水性;GOQDs质量分数的增加提高了复合膜的质子传导率,80 ℃时复合膜的质子传导率最高可达0.182 S/cm。

关键词: 静电纺丝, 聚丙烯腈纳米纤维, 氧化石墨烯量子点, 质子交换膜, 燃料电池

Abstract:

In order to improve the proton conductivity and dimensional stability of the Nafion proton exchange membrane, a well-designed structure is in high demand. A graphene oxide quantum dot (GOQDs) / polyacrylonitrile (PAN) nanofiber membrane was prepared by electrostatic spinning technology, and a nanofiber composite proton exchange membrane was prepared by Nafion solution impregnation method. The structures and properties of nanofibers and composite membranes were characterized by scanning electron microscope, confocal microscopy, thermal gravimetric analyzer and X-ray diffractometer. The results show that GOQDs are evenly distributed in PAN nanofibers, and the addition of GOQDs reduces the diameter of the nanofiber. The three-dimensional network structure of nanofibers plays a skeletal support role in the composite membrane, which improves the dimensional stability of the composite membrane. At the same time, the thermal stability and water absorption of the composite membrane is improved. With the increase of GOQDs mass fraction, the proton conductivity of the composite membrane is improved, and the maximum proton conductivity of the composite membrane reaches 0.182 S/cm at 80 ℃.

Key words: electrospinning, polyacrylonitrile nanofiber, graphene oxide quantum dot, proton exchange membrane, fuel cell

中图分类号: 

  • TM911.4

图1

PAN-GOQDs/Nafion复合质子交换膜的制备过程"

图2

PAN及PAN-GOQDs纳米纤维膜扫描电镜照片"

图3

PAN-GOQDs/Nafion复合质子交换膜的扫描电镜图"

图4

纳米纤维和复合质子交换膜共聚焦显微镜图"

图5

复合质子交换膜TG曲线"

图6

纳米纤维膜及复合质子交换膜XRD曲线"

表1

不同温度下复合质子交换膜的吸水率和溶胀率"

样品名称 吸水率 溶胀率
20 ℃ 40 ℃ 60 ℃ 80 ℃ 20 ℃ 40 ℃ 60 ℃ 80 ℃
重铸Nafion 13.2 20.5 31.9 42.6 13.6 14.6 17.7 21.1
PAN/Nafion 12.8 18.9 30.2 40.9 8.2 9.5 11.9 15.4
PAN-GOQDs1/Nafion 17.8 24.3 33.6 45.7 8.4 9.7 12.4 16.2
PAN-GOQDs2/Nafion 22.4 30.1 37.8 50.4 9.9 11.2 14.1 17.1
PAN-GOQDs3/Nafion 24.1 32.7 40.6 55.4 10.8 12.3 15.4 18.1

表2

不同温度下复合质子交换膜质子传导率"

样品名称 20 ℃ 40 ℃ 60 ℃ 80 ℃
重铸Nafion 0.021 0.049 0.084 0.109
PAN/Nafion 0.019 0.045 0.082 0.104
PAN-GOQDs1/Nafion 0.029 0.067 0.108 0.153
PAN-GOQDs2/Nafion 0.043 0.075 0.125 0.171
PAN-GOQDs3/Nafion 0.052 0.078 0.133 0.182

图7

复合质子交换膜力学性能曲线"

[1] HAN R, WU P. Composite proton-exchange membrane with highly improved proton conductivity prepared by in situ crystallization of porous organic cage[J]. ACS Applied Materials & Interfaces, 2018,10(21):18351-18358.
pmid: 29745640
[2] BAKANGURA E, WU L, GE L, et al. Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives[J]. Progress in Polymer Science, 2016,57:103-152.
[3] PEIGHAMBARDOUST S J, ROWSHANZAMIR S, AMJADI M. Review of the proton exchange membranes for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010,35(17):9349-9384.
[4] ALBERTI G, NARDUCCI R, SGANAPPA M. Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix[J]. Journal of Power Sources, 2008,178(2):575-583.
[5] ZHANG H, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews, 2012,112(5):2780-2832.
pmid: 22339373
[6] LUO W, ZHAO L. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from tetraethoxysilane, 3-glycidyloxypropyltrimethoxysilane, trimethyl phosphate and diethylethylammonium trifluoromethanesulfonate[J]. Journal of Membrane Science, 2014,451:32-39.
[7] LI J, WANG S, XU J, et al. Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2017,529:243-251.
[8] SHEN C, GUO Z, CHEN C, et al. Preparation of inorganic-organic hybrid proton exchange membrane with chemically bound hydroxyethane diphosphonic acid[J]. Journal of Applied Polymer Science, 2012,126(3):954-959.
[9] LEE C, JO S M, CHOI J, et al. SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells[J]. Journal of Materials Science, 2013,48(10):3665-3671.
[10] DIVONA M, AHMED Z, BELLITTO S, et al. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process[J]. Journal of Membrane Science, 2007,296(1/2):156-161.
[11] JIANG Z, ZHAO X, MANTHIRAM A. Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2013,38(14):5875-5884.
[12] TSENG C, YE Y, CHENG M, et al. Sulfonated polyimide proton exchange membranes with graphene oxide show improved proton conductivity, methanol crossover impedance, and mechanical properties[J]. Advanced Energy Materials, 2011,1(6):1220-1224.
[13] HE Y, TONG C, GENG L, et al. Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: size effect of graphene oxide[J]. Journal of Membrane Science, 2014,458:36-46.
[14] KONG B, ZHU A, DING C, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012,24(43):5844-5848.
pmid: 22933395
[15] WU W, LI Y, LIU J, et al. Molecular-level hybridization of Nafion with quantum dots for highly enhanced proton conduction[J]. Advanced Materials, 2018,30(16):1707516.
[16] CAO L, MEZIANI M J, SAHU S, et al. Photoluminescence properties of graphene versus other carbon nanomaterials[J]. Accounts of Chemical Research, 2012,46(1):171-180.
pmid: 23092181
[17] XU X, LI R, TANG C, et al. Cellulose nanofiber-embedded sulfonated poly (ether sulfone) membranes for proton exchange membrane fuel cells[J]. Carbohydrate Polymers, 2018,184:299-306.
[18] HASANI-SADRABADI M M, SHABANI I, SOLEIMANI M, et al. Novel nanofiber-based triple-layer proton exchange membranes for fuel cell applications[J]. Journal of Power Sources, 2011,196(10):4599-4603.
[19] YAO Y, JI L, LIN Z, et al. Sulfonated polystyrene fiber network-induced hybrid proton exchange mem-branes[J]. ACS Applied Materials & Interfaces, 2011,3(9):3732-3737.
doi: 10.1021/am2009184 pmid: 21838242
[20] ESCORIHUELA J, GARCÍA-BERNABÉ A, MONTERO A, et al. Proton conductivity through polybenzimidazole composite membranes containing silica nanofiber mats[J]. Polymers, 2019,11(7):1182.
[21] CAI Z, LI R, XU X, et al. Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane[J]. Polymer, 2018,156:179-185.
[22] GAO Q J, WANG Y X, XU L, et al. Proton-exchange sulfonated poly(ether ether ketone)/sulfonated phenolphthalein poly(ether sulfone) blend membranes in DMFCs[J]. Chinese Journal of Chemical Engineering, 2009,17(6):934-941.
[23] YANG H N, LEE W H, CHOI B S, et al. Preparation of Nafion/Pt-containing TiO2/graphene oxide composite membranes for self-humidifying proton exchange membrane fuel cell[J]. Journal of Membrane Science. 2016,504:20-28.
[24] GENIES C, MERCIER R, SILLION B, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes[J]. Polymer, 2001,42(2):359-373.
[25] JIN J, HAO R, HE X, et al. Sulfonated poly(phenylsulfone)/fluorinated polybenzoxazole nanofiber composite membranes for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2015,40(41):14421-14427.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[11] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[12] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[13] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[14] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[15] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!